
JAL 2.0 manual

JAVIER MARTÍNEZ DAVE LAGZDIN

VASILE SURDUCAN

June 10, 2006

JAL 2.0 Manual

Copyright c©2006 JAVIER MARTÍNEZ, DAVE LAGZDIN and VASILE SURDUCAN.

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.2 or any later version published by the Free Soft-
ware Foundation; with no Invariant Sections, with this Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled ”GNU Free Documentation
License”.

JAL 2.0 manual

JAL 2.0 [3] is a high-level language for a number of Microchip TM PIC microcontrollers [1].

It was created by KYLE YORK, who also wrote the PICbsc compiler [2]. STEF MIENTKI

got in touch with KYLE YORK and ask him if he could look into rewriting JAL using the
PICbsc engine, the prospect intrigued him. JAL 2.0 not only shares the same JAL [4] syntax,
but adds new features (like new types, arrays, etc.) to JAL, keeping the PICbsc internal com-
piler design as well. This manual covers all aspects of JAL 2.0 without any reference to JAL
trying to be useful for all, novices and users with JAL experience.

JAL was developed by WOUTER VAN OOIJEN1. He created JAL because he did not like
any of the low-cost (or free) languages for these chips and implementing a high level language
looked like a nice project.

For a quick impression of JAL 2.0 here’s a small example how JAL 2.0 looks. Also, you
could read either the summary2 or the examples3 section of this manual.

Example:

; microcontroller definition file
include c16F877_10

; set pin a0 direction as output
pin_a0_direction = output

; do forever the statements inside the loop
forever loop

pin_a0 = ! pin_a0 ; complement value of a0
delay_1s(1) ; wait 1 second

end loop

1Wouter released JAL under GPL (http://jal.sourceforge.net) in January of 2003.
2See section 6 on page 89
3See section 4 on page 69

3

http://jal.sourceforge.net

4

Contents

1 Language definition 9
1.1 basics . 9

1.1.1 Format . 9
1.1.2 Comments . 9
1.1.3 Includes . 10
1.1.4 Program . 10
1.1.5 Scope . 11
1.1.6 Block . 11

1.2 basic types . 11
1.2.1 Built-in types . 11
1.2.2 Extending types . 12

1.3 Literals . 13
1.4 Constants . 14
1.5 Variables . 15

1.5.1 Declaration . 15
1.5.2 Location . 17
1.5.3 Volatile . 18
1.5.4 Alias . 18

1.6 Tables . 18
1.6.1 Constant tables . 18
1.6.2 Variable tables . 19

1.7 Expressions . 20
1.7.1 Operators . 20
1.7.2 Priority . 22

1.8 Statements . 23
1.8.1 Declaration . 23
1.8.2 Assignment . 23
1.8.3 IF . 23
1.8.4 WHILE . 25
1.8.5 FOR . 25
1.8.6 FOREVER . 26
1.8.7 COUNT . 26
1.8.8 _usec_delay . 26

1.9 Procedures and functions . 27
1.9.1 Pseudo variables . 30

5

Contents

1.10 Tasks . 31
1.11 Inline assembler . 33

1.11.1 Single assembler statement . 33
1.11.2 Assembler block . 33
1.11.3 Scope . 35

1.12 Pragmas . 36
1.12.1 Chip Definition Pragmas . 40

2 Compiler 43
2.1 Basic . 43
2.2 Command line compiler options . 44
2.3 Behaviour . 45

2.3.1 End of program. 45
2.3.2 FOR without USING . 46
2.3.3 Optimization . 46
2.3.4 Debug output . 47

3 Libraries 49
3.1 PIC definition library structure . 49

3.1.1 Chip definition file . 49
3.1.2 Core definition file . 50
3.1.3 PIC chip definition file . 53
3.1.4 Example of usage . 53

3.2 Other libraries . 54
3.2.1 Operating with digital I/O ports . 54
3.2.2 Shadowing digital I/O ports . 56
3.2.3 Disabling analog functions . 57
3.2.4 Configuring the Oscillator . 58
3.2.5 Making JAL 2.0 to recognize your own PIC device 60

4 Examples 69
4.1 Example 0: Blink a led. 70
4.2 Example 1: Scan a button. 72
4.3 Example 2: Control the blink of a led. 73
4.4 Example 3: Adding a hardware timer. 75
4.5 Example 4: Using hardware interrupts. 78

5 Glossary 85

6 GNU Free Documentation License 89

6

Revision history

7th March 2006 First edition, pJAL version 0.9 (Released on 2006 March 2).
Written by: JAVIER MARTÍNEZ, DAVE LAGZDIN and VASILE SURDUCAN

Thanks to: JOEP SUIJS, KYLE YORK, MICHAEL WATTERSON, STEF MIENTKI and WOUTER

VAN OOIJEN.

21th April 2006 Second edition, JAL 2.0 (Released on 2006 April 20).
Updated by: JAVIER MARTÍNEZ, DAVE LAGZDIN and VASILE SURDUCAN

Modifications: changed compiler name, corrected small bugs, added some suggestions and up-
dated multi-word configuration bits.

10th June 2006 Third edition, JAL 2.0 (Released on 2006 June 8).
Updated by: JAVIER MARTÍNEZ, DAVE LAGZDIN and VASILE SURDUCAN

Thanks to: NORBERT SCHLICHTHAERLE, ANDREE STEENVELD.
Modifications: corrected small bugs, added some suggestions and new compiler features.

7

Contents

8

1 Language definition

1.1 basics

1.1.1 Format

The JAL 2.0 language is free-format (except for comments) and not case-sensitive. All char-
acters with an ASCII value below the space (tab, carriage return, new line, form feed, etc.) are
treated as spaces, except that the end of a line terminates a comment.

JAL 2.0 does not use statement separators. The only real separators are the comma’s be-
tween the (formal or actual) arguments to a procedure or function "(,)", or in an array
definition "{ , }".

Example:

-- if statement in preferred format
if a > b then

a = b + 1
else

a = b - 1
end if

-- but this has exactly the same effect
if a > b then a = b + 1 else a = b - 1 end if

-- comma’s between actual arguments
f(a, b, c, d)
var byte msg[5] = "Hello"

1.1.2 Comments

A comment is started by the token "--" or ";" and continues until the end of the line.

9

1 Language definition

Example:

-- the next line contains a comment
-- after the assignment
ticks = ticks + 1 ; one more tick

; the next line contains the same comment
; after the assignment
ticks = ticks + 1 -- one more tick

1.1.3 Includes

An include causes the content of the included file to be read. A subsequent include for the
same file name will be ignored. This makes it possible for a library file to include all required
lower libraries.

Included files are sought first in the current directory, and next in each location indicated
by the compilers search path. All JAL 2.0 files have the extension ".jal". Be care not to
include this extension in the include statement.

Includes can be nested to any level.

Example:

include serial -- include the serial.jal file
include i2c -- include the i2c.jal file

1.1.4 Program

A JAL 2.0 program is a sequence of statements. Declarations are also considered statements,
so declarations can appear almost anywhere in a program.

Example:

-- my first program
var byte b -- variable declaration
while b > 0 loop -- start of loop

b = b + 1 -- variable assignment
end loop -- end of loop

10

1.2 basic types

1.1.5 Scope

JAL 2.0 is a block-structured language, so each declaration is visible from its declaration to
the end of the block in which the declaration appears (in practice this means to the first end at
the current nesting level).

A declaration can hide a declaration of the same name from an enclosing block. A declara-
tion can not hide a name which was already declared at the same nesting level.

Example:

var byte b
while b > 0 loop

var bit b -- Overrides the byte b defined
-- outside the while block.

b = false -- The bit b, not the byte

var byte b -- Error, "b" already declared
-- as a bit inside the while block.

end loop

var word b -- Error, "b" already declared
-- as a byte before while block.

1.1.6 Block

A block is a sequence of statements. Variables, constants, procedures, and functions defined
in a block will not be visible outside of the block.

1.2 basic types

1.2.1 Built-in types

These are the types of range values that JAL 2.0 supports.

BIT 1 bit unsigned boolean value (range is 0 or 1)1.

BYTE 8 bit unsigned value (range is 0 .. 255).

1 JAL 2.0 support aditional names for this range: 0 = FALSE = LOW = OFF and 1=TRUE=HIGH=ON.

11

1 Language definition

SBYTE 8 bit signed value (range is -128 .. 127).

WORD 16 bit unsigned value (range is 0 .. 65,535).

SWORD 16 bit signed value (range is -32,768 .. 32,767).

DWORD 32 bit unsigned value (range is 0 .. 4,294,967,296).

SDWORD 32 bit signed value (range is -2,147,483,648 .. 2,147,483,647).

1.2.2 Extending types

Basic types can be extended using the token [*cexpr]2 preceded by token type. Being type one
of the following built-in types3: BIT, BYTE or SBYTE.

BYTE and SBYTE
For BYTE and SBYTE, this means the variable will be defined as an integer using cexpr

bytes.

Example:

WORD is simply shorthand for BYTE*2
DWORD is simply shorthand for BYTE*4

BIT
If type is BIT, the definition changes. A BIT variable, as defined in JAL, is really of type

boolean. When assigned any non-zero value, it takes on the value of 1.

Using the [*cexpr], the definition changes to be more like a C bit field: assignment is
masked.

We can create a ’nibble-like’ grouping of bits with range 0 to (2cexpr − 1), i.e.: with 2 bits
we can count to 3 (0b11)

Example:

VAR BIT*2 cc

-- when assigning to cc, the internal
-- compiler assignment is:
cc = (value & 0x03) -- mask 2 least significative bits

-- remember 0x03=0b00000011

2cexpr means a constant expression or a literal value.
3See section 1.2.1 on the preceding page

12

1.3 Literals

1.3 Literals

Literals are numeric constants with a invariant value, the format is:

12 a decimal numeric constant

0x12 a hexadecimal numeric constant

0b01 a binary numeric constant

0q01 an octal numeric constant

"a" an ASCII char constant

"Hello" a string constant. Following escape sequence chars can be used inside a string:

Escape sequence char Description
\a Bell
\b Backspace
\f Form Feed
\n Line Feed
\r Carriage Return
\t Horizontal TAB
\v Vertical TAB
\\ \
\? ?
\’ ’
\" ”
\0 Hexadecimal value: 0x00
\x## Hexadecimal value: 0x##

Literals other than ASCII constants may also contain a number of underscores "_" which are
ignored, but are useful for making them more readable.

Example:

0b_0000_1111 -- a binary literal

-- a fuse definition (14 bit word)
0b_11_0000_1111_0000

1_234_567 -- a decimal literal

13

1 Language definition

String constants can use C style initialization style, eg:

var byte string[] = "abc" "def" "ghi"

is the same as:

var byte string[] = "abcdefghi"

1.4 Constants

A constant declaration introduces a name which has a constant value throughout its scope.
When the type is omitted the constant has a SDWORD type. A single constant declaration can
introduce a number of constants of the same type.

CONST [type[*cexpr]] identifier [’[’ cexpr ’]’]

{ ’=’ cexpr | = ’{’ cexpr1[, cexpr2,...]’}’ | = ’"’ cexpr ’"’}

[, identifier2...]

CONST denotes the beginning of a constant definition clause.

type[*cexpr] Defines the type of the constant. If none is given, the constant becomes uni-
versal type which is 32 bit signed (SDWORD).

’[’ cexpr ’]’ Defines a constant table 4.
A constant table will not take any space unless it is indexed at least once with a non-
constant subscript. On the PIC, constant tables consume code space, not data space, and
are limited to 255 elements.

’=’ cexpr For non-table constants this assigns the value to the constant.

’=’ ’{’ cexpr1[, cexpr2 . . .] ’}’ For tables of constants this assigns the value to each ele-
ment. There must be the same number of cexprs as there are elements defined.

”” cexpr ”” A string constant can be assigned to a constant table:
const byte x[] = "hello".

Example:
4See section 1.6.1 on page 18

14

1.5 Variables

const byte cr = 0x0D, lf = 10 -- byte constants
const word cr = 1492 -- word constant

-- Literal (SDWORD) constant
const seconds_per_day = 60 * 60 * 24

-- constant table
const byte mytable[5] = {"M","2",24,1,43}
-- String constant table
const byte zz[] = "Hello"

-- Extended type constant
const byte*3 my_pointer = 0xFFCC00

1.5 Variables

1.5.1 Declaration

A variable declaration introduces a name which will be used within the JAL 2.0 program. In
PIC architecture this name will correspond to a hardware location called register located in
RAM memory.

These registers can be of two types:

• GPR. General Purpose Registers

• SFR. Special Function Registers

Optionally the name can be bound to a specific location5, or to other already declared variable6,
otherwise the compiler allocates a suitable and available GPR location.

In a declaration a value can be assigned to a variable, which has the same effect as an
equivalent assignment immediately following the declaration.

Example:

var byte demo = 0xAF

-- ... same as ...
var byte demo

5See section 1.5.2 on page 17
6See section 1.5.4 on page 18

15

1 Language definition

demo = 0xAF

The initial value does not need to be a constant expression.

JAL 2.0 will set the correct bank memory while addressing a variable (except in inline
assembler7).

VAR [VOLATILE] type[*cexpr]
identifier [’[’ cexpr ’]’]

[{ AT cexpr [: bit] |
variable [: bit] |
’{’ cexpr1[, cexpr2...] ’}’

| IS variable }

[’=’ cexpr | ’{’ cexpr1, ... ’}’ | ’=’ ’"’ cexpr ’"’]

[, identifier2...]

VAR denotes the beginning of a variable definition clause.

VOLATILE A variable can be declared volatile, which expresses that the variable does not
possess normal variable semantics8.

type[*cexpr] The type of the variable9.

Identifier Any valid JAL 2.0 identifier.

’[’ cexpr ’]’ Defines a table10 of cexpr11 elements. The table index starts at 0 and continues
through (cexpr - 1). cexpr must be >= 1. A table MUST fit entirely within a single PIC
data bank.

AT . . . denotes the location of the variable12.

7See section 1.11 on page 33
8See section 1.5.3 on page 18
9See section 1.2.1 on page 11 and section 1.2.2 on page 12.

10See section 1.6.2 on page 19.
11cexpr means a constant expression or a literal value.
12See section 1.5.2 on the next page

16

1.5 Variables

IS variable Tells the compiler that this identifier is simply an alias for another13.

’=’ expr Shorthand assignment. The variable will be assigned expr.

’=’ ’{’ expr1 [, expr2 . . .] ’}’ For a table variable, the elements will be assigned expr1, expr2,
. . . .

”” cexpr ”” A string constant can be assigned to a variable table:
var byte x[5] = "hello".

, identifier2 . . . Allows defining multiple variables with the same attributes: VAR BYTE
a,b,c

var byte x, y=3
var word z
var dword i=0
var byte AD_lo, AD_hi
var word AD_result = AD_lo + 256*AD_hi

1.5.2 Location

A variable declaration can specify the adress of the variable. The address expression must be
compile-time constant. The compiler takes care of the translation to the banked address.

AT cexpr [’:’ bit] Places the new variable at address cexpr.

AT variable [’:’ bit] Places the new variable at the same address as an existing variable.
Any address uses for explicit placement will not be allocated to another variable.

AT ’{’ cexpr1[, cexpr2 . . .] ’}’ Places the new variable at multiple address. On the PIC,
many of the special purpose registers14 are mirrored in two or more data banks. Telling
the compiler which address hold the variable allows it to optimize the data access bits.

var byte volatile porta at 0x06
var volatile byte _status AT {0x0003, 0x0083,

0x0103, 0x0183}
var bit volatile _z at _status : 2

13See section 1.5.4 on the following page
14SFRs in MicrochipTM’s terminology.

17

1 Language definition

1.5.3 Volatile

The VOLATILE keyword guarantees that a variable that is either used or assigned will not
be optimized away, and the variable will be only read once when evaluating an expression.
Normally, if a variable is assigned a value that is never used, the assignment is removed and
the variable will not allocated any space.

If the assignment is an expression, the expression will be fully evaluated. If a variable is
used, but never assigned, all instances of the variable will be replaced with the constant 0 (of
the appropriate type) and the variable will not be allocated any space.

SFR’s should always be declared as VOLATILE, as these are associated with certain hard-
ware functions specific to the PIC being used.

var volatile byte FSR at 4
var volatile byte INDF at 0
var volatile byte count

1.5.4 Alias

A variable can be declared to be an alias for another variable. This is used much like a constant
declaration to hide the actual identity of an identifier from subsequent code.

-- fragment of a library file,
-- which defines the pins used by the library
var byte volatile i2c_clock is pin_a3
var byte volatile i2c_data_in is pin_a4
var byte volatile i2c_data_out is pin_a4_direction

1.6 Tables

1.6.1 Constant tables

Constant tables are stored in program code, they’re limited to 255 values.

const byte msg[5] = {"M","2",24,1,43}

A constant table will produce no code unless it’s used with a variable subscript. So, if you
use:

18

1.6 Tables

-- Constant index:
-- "msg[3]" will replace by the corresponding
-- literal value, like: a=1
a = msg[3]

. . . the constant value 1 will be assigned into variable a. And if you use:

-- Variable index:
-- A special look up table function is built
x = 3
a = msg[x]

. . . msg will become a lookup table function that will return the desired value.

If constant table is declared with values assignment, it’s not necessary to include the table
index:

const byte msg[] = {"M","2",24,1,43}

In order to know the amount of values in the table you must use the COUNT statement15.

1.6.2 Variable tables

Variable tables are stored in RAM memory and must fit within a single bank.

var byte msg[5] = {"M","2",24,1,43}

1. when defining a table, the size must be const, so
var byte myvar[3] ; this is valid
var byte myvar[n] ; this is NOT valid if n is a variable

2. when using the table, the index can be either const or a variable. The table starts at index
0. When using a variable, no bounds checking is done.

-- Constant index:
-- "msg[3]" will replace by the exact file register
-- with the index 3
a = msg[3]

-- Variable index:
-- An INDIRECT MEMORY ACCESS is used to get the value
x = 3
a = msg[x]

15See section 1.8.7 on page 26

19

1 Language definition

If variable table is declared with values assignment, it’s not necessary to include the table
index:

var byte msg[] = "Hello"

In order to know the amount of values in the table you must use the COUNT statement16.

1.7 Expressions

An expression is constructed from literals, identifiers, function calls and operators. An identi-
fier can identify a constant, a variable or (within a subprogram) a formal parameter.

1.7.1 Operators

The following operators are defined in JAL 2.0 (ordered by priority):

Op. Description Priority Example
!! Logical 0 (highest) !!5 = 1

!!0 = 0
- Unary negation 0 (highest) -1 -- negative
! Bitwise complement 0 (highest) var byte a=0b_0000_1111

a=!a
-- a=0b_1111_0000

~ Bitwise complement 0 (highest) var byte a=0b_0000_1111
a=~a
-- a=0b_1111_0000

* Multiplication 1 var byte a = 2
a=a*3 -- a=6

/ Integer division 1 var byte a = 17
a=a/2 -- a=8

% Modulus division 1 var byte a = 17
a=a%2 -- a=1

+ Addition 2 var byte a = 2
a=a+3 -- a=5

- Subtraction 2 var byte a = 17
a=a-10 -- a=7

. . .

16See section 1.8.7 on page 26

20

1.7 Expressions

Op. Description Priority Example
<< Left shift 3 var byte a = 0x81

a=a<<1 -- a=0x02
>> Right shift 3 var byte a = 0x82

a=a>>1 -- a=0x41
< Less than 3 var byte a=12, b=14

if a < b then ...
<= Less or equal than 3 var byte a=12, b=12

if a <= b then ...
== Equal 3 var byte a=12, b=12

if a == b then ...
!= Not equal 3 var byte a=12, b=14

if a != b then ...
>= Greater or equal than 3 var byte a=14, b=12

if a >= b then ...
> Greater than 3 var byte a=12, b=12

if a >= b then ...
& Bitwise AND 4 (lowest) var byte a=0b_1111_1110

a=a&0b_0000_0011
-- a=0b_0000_0010

| Bitwise OR 4 (lowest) var byte a=0b_0000_1110
a=a|0b_0011_1100
-- a=0b_0011_1110

^ Bitwise XOR 4 (lowest) var byte a=0b_1111_1110
a=a^0b_0000_0011
-- a=0b_1111_1101

Tips:

• The Logical operator "!!" returns 0 if the operand is 0, or 1 if the operand is not 0. It’s
useful in some expressions which need a guarantee that operand is either 1 or 0.

• Right shift is logical for unsigned types, and arithmetic for signed types (it’s sign pre-
serving).

Logical right shift (for unsigned types):

21

1 Language definition

Arithmetic right shift (for signed types):

• Operands to binary operations MUST be the same, and return the type of the operand
EXCEPT the relationals (">=", "<", etc.), which return a BIT value.

Example:

-- Use of relationals as BIT type selector:
const myclk = 1 * (SPI_clock == (target_clock / 4)) +

2 * (SPI_clock == (target_clock / 16)) +
3 * (SPI_clock == (target_clock / 64))

-- myclk being assigned 1, 2, 3, or 0.

• An exception to the above rule is the universal type : when used in an expression, the
universal type will be converted to type of the other operand.

Example:

var byte a = 1 << n
if (a > b) | (c < d) | (x != y) then

x = (x & 0b_1100_0011) | 0b_0001_0100
end if

22

1.8 Statements

1.7.2 Priority

Braces can be used to force the association, otherwise the operator’s associate with their argu-
ments according to operator’s priority.

Example:

var byte x = ! a + b -- (! a) + b
var y = ! (a + b) -- not the same as previous

1.8 Statements

A statement is any variable, constant, function, or procedure definition, assignment, control
(IF) or looping (FOR, FOREVER, WHILE).

1.8.1 Declaration

Declarations are considered statements, so declarations can appear anywhere in a program
where a statement is allowed.

Example:

a = 5
-- need a few locals here? no problem!
var byte x = 1, y = 0
while x < a loop

y = y + x
x = x + 1

end loop

1.8.2 Assignment

An assignment statement evaluates the expression and assigns its value to the variable or
formal parameter indicated by the name on the left of the assignment.

Example:

var byte a
procedure p(byte out q) is

q = 5 -- assign to the (out) parameter q
a = 4 -- assign to the global variable a

23

1 Language definition

end procedure
a = 5 -- assign to the (now local) variable a

1.8.3 IF

An IF statement evaluates an expression. If the result is true the list of statements following
the THEN token is executed.

Before the ELSE token any number of ELSIF tokens can appear. When the IF condition
is false, the first ELSIF condition is evaluated. If it is true the corresponding statements are
executed, otherwise execution continues with the next ELSIF part.

When none of the IF and ELSIF conditions evaluate to true the statements in the optional
ELSE part are executed.

The IF statement serves two purposes:

Conditional execution

IF expr THEN
block

[ELSIF expr THEN block ...]
[ELSE block]
END IF

Note: any number of ELSIF conditions may be present.

Example:

IF myvar = 13 THEN
-- Case of myvar = 13 ...

ELSIF myvar = 10 THEN
-- Case of myvar = 10 ...

ELSE
-- Any other values of myvar

END IF

Conditional compilation

IF cexpr THEN
block

[ELSIF cexpr THEN block ...]

24

1.8 Statements

[ELSE block]
END IF

In this case, a new scope is NOT opened. If cexpr17 is 0, the associated statements are
skipped without further processing, so it can be used to create a block comment.

Example:

IF target_chip = 16f877 THEN
-- Execution part if PIC16F877

ELSIF target_chip = 16f876 THEN
-- Execution part if PIC16F876

ELSE
-- Execution part other chips

END IF

1.8.4 WHILE

The WHILE statement allows conditional looping.

WHILE expr LOOP
block

END LOOP

A while statement evaluates the expression (expr). If the result is false, the while statement
has completed its execution. Otherwise the statements are executed, after which the expression
is evaluated again etc. The block statements will be executed as long as expr is non-0

Example:

while r > y loop
d = d + 1
r = r - y

end loop

1.8.5 FOR

The FOR statement allows looping a given number of times.

FOR expr [USING variable] LOOP
block

END LOOP
17cexpr means a constant expression or a literal value.

25

1 Language definition

If the USING variable clause does not exist, the variable _temp is used instead of. If _temp
is needed, its type will be the same type as expr.

1.8.6 FOREVER

The FOREVER statement simply creates a loop that will never end.

FOREVER LOOP
block

END LOOP

1.8.7 COUNT

The COUNT statement returns the number of elements of an array, can be used anywhere a
constant is expected:

-- using constant tables
const byte x[] = "hello"
var byte y
var volatile byte z

for count(x) using y loop
z = x[y]

end loop

-- using variable tables
var byte m[] = "hello"
var byte n
var volatile byte p

for count(m) using n loop
p = m[n]

end loop

1.8.8 _usec_delay

The _USEC_DELAY creates an inline delay.

_usec_delay(cexpr)

26

1.9 Procedures and functions

18

For clock speeds 4MHz and higher, the delay is exact assuming interrupts are not enabled.
A previous pragma target clock ... pragma statement is required, or the error
target_clock not found will be generated. The longest delay available is about 35 minutes, but
this requires 5K code at 20MHz.

_usec_delay(1000) -- 1 msec delay with a 4MHz Xtal.

1.9 Procedures and functions

A procedure is a named block of statements that may take parameters.

A function is like a procedure, the difference is it will return a single value which can be
used in an expression.

PROCEDURE identifier
[’(’ [[VOLATILE] {IN | OUT | IN OUT } param

[, ...]] ’)’]
IS [BEGIN]

block

END PROCEDURE

FUNCTION identifier
[’(’ [[VOLATILE] {IN | OUT | IN OUT } param

[, ...]] ’)’]
RETURN type IS [BEGIN]

block
RETURN expr

END FUNCTION

Note : The identifier used to denote a PROCEDURE or FUNCTION belongs
to the outer block, whereas all parameter names will belong to a newly created
block Using of [BEGIN] is optional.

PROCEDURE denotes the beginning of a procedure definition.

18cexpr means a constant expression or a literal value.

27

1 Language definition

FUNCTION denotes the beginning of a function definition.

identifier Any legal JAL 2.0 identifier.

VOLATILE A volatile parameter must be passed in as a pseudo-variable19. If the parameter
passed in is regular variable, an appropriate pseudo-variable will be created.

IN On entry, this parameter’s value is set by the caller to an expression. If this parameters is
not VOLATILE, it can be used or modified like any other variable, but changes will not
be passed back to the caller. If this parameter is VOLATILE, its value cannot be written.

Example:

procedure ex_in(byte in x) is
x = x + 1

end procedure

-- running the procedure:
ex_in (0x0A)
-- will compute inside the block x = 0x0B,
-- there is no access outside the block to the x value

OUT On entry, this parameter’s value is not defined. The caller MUST pass a variable (not a
constant or expression). If this parameter is not VOLATILE, it can be used or modified
like any other variable. If the parameters is VOLATILE, its value cannot be read. On
exit, the caller’s variable will be set to whatever value this has.

Example:

procedure ex_out(byte out x) is
x = 0x0A

end procedure

-- running the procedure:
var byte a = 0
ex_out(a)
-- by using the procedure, a = 0x0A

IN OUT This combines properties of IN and OUT.
19See section 1.9.1 on page 30

28

1.9 Procedures and functions

Example:

procedure ex2_in_out(byte in out x) is
x = x + 1

end procedure

-- before running the procedure:
var byte mydata = 0x0A

-- after running the procedure:
ex2_in_out (mydata)
-- mydata will be 0x0B

param This is defined exactly like a variable definition above, except the VAR keyword is not
expected and it cannot be assigned a value.

RETURN type For functions, this defines the type returned to the caller. type can be any
standard type, including the width specifier.

Example:

function compute_AD_result
(byte in AD_hi,
byte in AD_lo) return word is

AD_result = AD_lo + 256*AD_hi
return AD_result

end function

compute_AD_result (0b_0000_0011, 0b_1111_1111)
-- will return the value AD_result = 1023

RETURN expr In a function, the RETURN expr statement is used to set the value returned.
If no RETURN expr is used in a function, the return value will be undefined.

IS [BEGIN] Starts the statement block.

block Any group of statements.

END {PROCEDURE | FUNCTION} Terminates the statement block.

Note: PROCEDUREs and FUNCTIONs can be nested.

29

1 Language definition

1.9.1 Pseudo variables

Pseudo-variables are procedures and/or functions that are references like and act like variables.
The accessor of a pseudo variable is a function that takes no parameters.

FUNCTION a’get RETURN type IS
block

END FUNCTION

Now, any reference to a will be replaced with a call to a’get.

Similarly, to set a pseudo variable, define a procedure that takes one parameter.

PROCEDURE a’put (param) IS
block

END PROCEDURE

Now, any assignment to a will be replaced with a call to a’put.

If an appropriate pseudo-variable is not found, an attempt is made to find the variable itself
(eg, when used in an expression, first a search is made on a’get(), failing that a search is made
for the variable a.

If more than one of the variable or accessor functions and/or variable are defined, all must
be of the same type!

Example:

procedure hd44780’put(byte in x) is ...

-- using the procedure
hd44780 = "H"
hd44780 = "e"
hd44780 = "l"
hd44780 = "l"
hd44780 = "o"

procedure async’put(byte in x) is ...

-- using the procedure
async = "H"
async = "e"
async = "l"

30

1.10 Tasks

async = "l"
async = "o"

function async’get return byte is ..

-- using the function:
x = async

1.10 Tasks

A TASK is a procedure that is started and becomes an apparently parallel thread of execution.
JAL 2.0 implements co-operative multitasking, that each Task uses a special command to hand
back program thread to the scheduler, which starts the oldest suspended task from the point it
made that command.

A Task has the same format as a PROCEDURE20 (it can take any number of parameters),
the format is:

TASK name [(parameters)] IS
END TASK

Tasks are started with:

START name[(parameters)]

And suspended with:

SUSPEND

If a Task reaches the "END TASK", it is killed.

Limitations:

• There is currently no way to determine a particular Task’s ID, how many Tasks are
running, or if Task creation fails.

• There’s also no way to kill a Task from another Task.

• SUSPEND is only allowed in the Task itself (not in anything called by the Task).

20See section 1.9 on page 27.

31

1 Language definition

• Each Task has its own variable storage (just like any other procedure or function).

• If the main program comes to the end, it still sleeps as before, effectively killing all
running Tasks.

• If you have two copies of the same Task running, bad things happen, so don’t do that
(actually, nothing really bad happens, they simply behave like a single Task occupying
to slots in the task list).

• You don’t know the execution order of Tasks, and you don’t know if a Task will execute
immediately after the START or wait until the first SUSPEND.

Example:

Three Tasks:

• Task1 increments counter1.

• Task2 increments counter2

• main task simply loops.

VAR VOLATILE BYTE counter1
VAR VOLATILE BYTE counter2

TASK task1(BYTE in aa) is
counter1 = aa
FOREVER LOOP

counter1 = counter1 + 1
SUSPEND

END LOOP
END TASK

TASK task2(BYTE in aa) is
counter2 = aa
FOREVER LOOP

counter2 = counter2 + 1
SUSPEND

END LOOP
END TASK

START task1(10)
START task2(20)
FOREVER LOOP

32

1.11 Inline assembler

SUSPEND
END LOOP

1.11 Inline assembler

There is a full assembler available when needed, it can be accessed using two ways.

1.11.1 Single assembler statement

A simple assembler statement consists of the token "asm" followed by a single assembler
statement.

Example:

asm clrwdt -- single assembler statement

1.11.2 Assembler block

A full assembler statement consists of the token "assembler", a sequence of label declara-
tions, labels and assembler statements, and is terminated with the token token "end assembler".

ASSEMBLER
[LOCAL label[, label2...]]
[label:]

[{ BANK | PAGE }] asm statement
...

END ASSEMBLER

Any labels used as the destination of a CALL or GOTO must be defined in the LOCAL
clause.

If the assembler statement accesses a file register and the BANK mnemonic is used, the
appropriate statements will be generated to guarantee the correct data bank is accessed21.

Example:
asm bank clrf myvar ; will set the correct bank of "myvar"

If the assembler statement jumps to a label and the PAGE mnemonic is used, the appropriate
statements will be generated to guarantee the correct code segment is used22.
21See PRAGMA KEEP BANK in section 1.12 on page 36
22See PRAGMA KEEP PAGE in section 1.12 on page 36

33

1 Language definition

Example:
asm page goto mylabel ; will set the correct page of "mylabel"

The full list of assembly statements defined in the PIC16F877/88 data sheet have been
implemented using the syntax found therein.

OPCODE field description
f Register file address (0x00 to 0x7F)
w Working register (accumulator)
b Bit address within an 8 bit file register
k Literal field
d Destination select:

d=w: store result in W,
d=f: store result in f,
default d=f

Assembler statements set summary

Mnemonic Description Cycles Flags affected
Byte-oriented file register operations

ADDWF f,d add W and f 1 C,DC,Z
ANDWF f,d AND W and f 1 Z
CLRF f Clear f 1 Z
CLRW Clear W 1 Z
COMF f,d Complement f 1 Z
DECF f,d Decrement f 1 Z
DECFSZ f,d Decrement f, skip if 0 1(2)
INCF f,d Increment f 1 Z
INCFSZ f,d Increment f, skip if 0 1(2)
IORWF f,d Inclusive OR W with f 1 Z
MOVF f,d Move f 1 Z
MOVWF f Move W to f 1
NOP No operation 1
RLF f,d Rotate left f through carry 1 C
RRF f,d Rotate right f through carry 1 C
SUBWF f,d Subtract W from f 1 C,DC,Z
SWAPF f,d Swap nibbles in f 1
XORWF f,d Exclusive OR W with f 1 Z

Bit-oriented file register operations
. . .

34

1.11 Inline assembler

Mnemonic Description Cycles Flags affected

BCF f,b Bir clear f 1
BSF f,b Bit set f 1
BTFSC f,b Bit test f, skip if clear 1(2)
BTFSS f,b Bit test f, skip if set 1(2)

Literal and control operations
ADDLW k Add literal and W C,DC,Z
ANDLW k AND literal with W Z
CALL k Call subroutine
CLRWDT Clear watchdog timer !TO,!PD
GOTO k Go to address
IORLW k Inclusive OR literal with W Z
MOVLW k Move literal to W
RETFIE Return from interrupt
RETLW k Return with literal in W
RETURN Return from subroutine
SLEEP Go into standby mode !TO,!PD
SUBLW k Subtract W from literal C,DC,Z
XORLW k Exclusive OR literal with W Z

Macros and extra mnemonics
OPTION k Move literal to OPTION register 1
TRIS {5,6,7} Move W to TRIS {5,6,7} register 1
MOVFW f A synonym for MOVF f, W 1 Z
SKPC A synonym for BTFSS _status, _c 1(2)
SKPNC A synonym for BTFSC _status, _c 1(2)
SKPZ A synonym for BTFSS _status, _z 1(2)
SKPNZ A synonym for BTFSC _status, _z 1(2)

1.11.3 Scope

An assembly statement can access any variable in scope. Only the simple types BIT, BYTE,
SBYTE and ARRAY are supported.

If the variable is a table, you must take care of:

• The elements of a table can only be accessed using a constant subscript: movf x[3],w

• Constant tables must be treated as literals: movlw x[3]

• Variable tables must be treated as file registers: movf x[3],w

35

1 Language definition

Example:

var byte x[]="hello"
var bit cc = low
var byte a
assembler
local 10:

movf x[3],w
movwf a
btfss cc
goto 10
incf a,f

10:
nop

end assembler

1.12 Pragmas

The user pragmas – compiler directives – are those most likely to be used by the average user.

PRAGMA EEDATA cexpr1[, cexpr2...] Defines data to be stored in the EEPROM. This
data always begins at the first location in the EEPROM. Each extra expr (or PRAGMA
EEDATA) bumps the next usable location. If the EEPROM over fills, an error is gener-
ated23.

Example:

pragma eedata "O","K",13,10,25

PRAGMA ERROR Generates an error. Useful for the conditional compilation with the IF
statement.

PRAGMA INTERRUPT This must only be used inside a PROCEDURE whose execution is
triggered by the reception of an interrupt. This procedure can take no parameters.
Using PRAGMA INTERRUPT links this procedure into the interrupt chain. Any num-
ber of procedures can exist in the interrupt chain, but the order in which they are exe-
cuted is not defined.
No extra stack space is required by an interrupt entry point. Once a procedure has been
marked as an interrupt entry point it cannot be directly called by the program.

23See PRAGMA EEPROM in section 1.12.1 on page 40

36

1.12 Pragmas

Example:

var word cc, bb

procedure ISR_TMR0 is
pragma interrupt -- This procedure is an

-- interrupt service routine
if T0IF then -- Check if TMR0 int.

T0IF = low
cc = cc + 1

end if
end procedure

procedure ISR_TMR1 is
pragma interrupt -- ... another one

if TMR1IF then -- Check if TMR1 int.
TMR1IF = low
bb = bb + 1

end if
end procedure

cc=0
bb=0

PRAGMA JUMP_TABLE This is obsolete and simply issues a warning. It has been re-
placed by constant arrays.

PRAGMA KEEP [BANK] | [PAGE] When using inline assembly, or assembly blocks, this
instructs the compiler to not optimize away any bank or page selectors generated. With-
out this, the compiler will normally not generate the selectors if the selector state is
known to be correct.

PRAGMA NAME name Generates an error if the name the file being compiled is the same
as name (what possible use is this?).

PRAGMA TARGET CHIP ident ident must be defined in chipdef.jal (see the list of
variables beginning with pic_*).

Example:

PRAGMA TARGET CHIP 16f877

37

1 Language definition

PRAGMA TARGET CPU ident ident must be defined in chipdef.jal .
This is analogous to: CONST target_cpu = cpu_ident.
PRAGMA TARGET CPU can overwrite the CONST TARGET_CPU definition.

Example:

CONST target_chip = pic_14

PRAGMA TARGET CLOCK cexpr Set the clock speed to cexpr. This is not used inter-
nally by the compiler.
This is analogous to: CONST target_clock = cexpr.
PRAGMA TARGET CLOCK can overwrite the CONST TARGET_CLOCK definition.

Example:

CONST target_clock = 10_000_000

PRAGMA TARGET FUSES cexpr1 cexpr2 Set the PIC configuration word register —
denoted by the index cexpr1— with value cexpr2. The literal cexpr1 must be in the
range denoted by the index defined in pragma CONST WORD _FUSES_BASE.
Example:

PRAGMA TARGET fuses 0 0b_xx_xxxx_xxxx_xxxx
-- will set fuses once according to
-- first configuration word register

CONST WORD _FUSES ’[’ cexpr1 ’]’ ’=’ ’{’ cexpr2 ’,’ ... ’}’ Set the values of a multi-
word configuration fuses, cexpr1 denotes the ammount of words.

Example:

const word _fuses[2] = {0x3fff,0x3fff}

CONST WORD _FUSES_BASE ’[’ cexpr1 ’]’ ’=’ ’{’ cexpr2 ’,’ ... ’}’ Set the addresses
of a multi-word configuration fusess, cexpr1 denotes the ammount of words.

Example:

const word _fuse_base[2] = {0x2007, 0x2008}

PRAGMA TARGET fusedef tag This allows one to set a fuse based on chip mnemonics24.
24See PRAGMA FUSE_DEF in section 1.12.1 on page 40

38

1.12 Pragmas

Available pragma target fuses defined are:

PRAGMA TARGET PROTECTION {on|off}
-- ON = flash program memory code protected
-- OFF = flash program memory code unprotected

PRAGMA TARGET DEBUG {on|off}
-- ON = In Circuit Debugger enabled
-- OFF = ICD disabled

PRAGMA TARGET CDP {on|off}
-- ON = data eprom code protected
-- OFF = data eprom code unprotected

PRAGMA TARGET LVP {on|off}
-- ON = low voltage ICSP enabled
-- OFF = low voltage ICSP disabled

PRAGMA TARGET BOR {on|off}
-- ON = brown out reset enabled
-- (check PIC voltage greater
-- than BOR defined level)
-- OFF = brown out reset disabled
-- (PIC may run at less than
-- BOR defined level)

PRAGMA TARGET POWERUP {on|off}
-- ON = powerup delay enabled
-- (add about 72mS delay after power+
-- up until program start)
-- OFF = powerup delay disabled

PRAGMA TARGET WATCHDOG {on|off}
-- ON = watchdog enabled
-- (watchdog delay period must be
-- programmed in the postscaler reg.)
-- OFF = watchdog disabled

PRAGMA TARGET OSC {lp|xt|hs|rc}
-- lp = low power oscillator,
-- use it with 32.768KHz to 200KHz crystal
-- xt = crystal/resonator 1MHz up to 4MHz
-- hs = high speed crystal/resonator 4MHz-20MHz
-- rc = resistor/capacitor oscillator

39

1 Language definition

1.12.1 Chip Definition Pragmas

Internally the compiler doesn’t know anything about the various chips. Instead, a chip defini-
tion file is used which describes code size, stack depth, eeprom location, general file register
locations, etc.

Since these are only useful for those defining new chips, they’re included here.

PRAGMA CODE cexpr Defines the maximum code size in words. If the total code gener-
ated exceeds this size an error is generated.
This is analogous to: CONST _code_size = cexpr.
PRAGMA CODE can overwrite the CONST _CODE_SIZE definition.

Example:

PRAGMA CODE 8192

PRAGMA DATA cexpr[-cexpr1][, . . .] This chip definition defines the data area available
for variables (also known as the general file register areas).

Example:

pragma data 0x0020-0x007f, 0x00a0-0x00ff,
0x120-0x16f, 0x1a0-0x1ef

PRAGMA EEPROM cexpr1, cexpr2 This is a chip definition PRAGMA and sets the start
and size of the EEPROM (cexpr1 is the start, cexpr2 is the size). If any PRAGMA
EEDATA statements exist, the assembly file will include:

pragma eeprom 0x2100, 256

ORG 0x2100
DW a, b, c, ... ; PRAGMA EEDATA values

PRAGMA STACK cexpr Defines the maximum stack size in levels. If the total stack use is
determined to be greater than this, an error is generated.
This is analogous to: CONST _stack_size = cexpr.
PRAGMA STACK can overwrite the CONST _STACK_SIZE definition.

Example:

pragma stack 8

40

1.12 Pragmas

PRAGMA FUSE_DEF tag [’:’ cexpr1] mask ’{’ tag ’=’ cexpr2 . . . ’}’ This defines a fuse
mnemonic that can be used to set and clear bits based on names rather than numbers.
The cexpr1 denotes the index of a multi-word configuration table.

Example:

pragma fuse_def protection 0b10000000000000 {
on = 0b00000000000000
off = 0b01000000000000

}

pragma fuse_def FCMEN:1 0b0_0000_0000_0001 { -- At 2nd conf. word
ENABLED = 0b0_0000_0000_0001
DISABLED = 0b0_0000_0000_0000

}

This defines a target mnemonic that the would be used as follows:
PRAGMA TARGET protection on
or
PRAGMA TARGET protection off
Internally, it becomes: _fuses = (_fuses & ~mask) | expr

41

1 Language definition

42

2 Compiler

2.1 Basic

The JAL 2.0 compiler is a command-line tool1. The same compiler is available for the MS
Windows command line, and for Linux2.

After a successful compilation the JAL 2.0 compiler produces two output files, these files
will have the same basic name as the JAL 2.0 file but the extensions will change to reflect
their types. The base name (file name without extension) of these two files is the same of
JAL 2.0 program requested for compilation. The first output file has the extension ".hex"
and contains the hex dump of the compiled program. This file can be used directly with most
programmers. The second file has the extension ".asm" and contains the assembler (text)
of the compiled program. This file can be used to inspect the generated code and to make
small modifications. The assembler file can be assembled with the standard MicrochipTM[1]
assembler.

Example:

Let’s assume that HOME_PJAL directory (where JAL 2.0 compiler is)3:

c:\pjal\pjal.exe

The required libraries are in the directory:

c:\pjal\chipdef\

On executing JAL 2.0 it’s suggested to include chipdef directory in the search path4 25:

c:\pjal> pjal.exe -s c:\pjal\chipdef

Optionally, other user libraries can be nested:

c:\pjal> pjal.exe -s c:\pjal\chipdef;c:\pjal\lib

As well other command line switches5:

c:\pjal> pjal.exe -s c:\pjal\chipdef -long-star

1See section 2.2 on the next page
2Linux binary requires libc.so.6 library.
3This example is valid for MS Windows compiler version. Linux users – they’re supposed to be used to shell –

can apply the same concepts.
4JAL 2.0compiler will search chipdef in current directory by default.
5See section 2.2 on the following page

43

2 Compiler

Finally, include the desired JAL 2.0 user file:

c:\pjal> pjal.exe -s c:\pjal\chipdef;c:\pjal\lib c:\pjal\test.jal

JAL 2.0 compiler will report the success of compilation:

c:\pjal> pjal.exe -s c:\pjal\chipdef;c:\pjal\lib c:\pjal\test.jal
picjal 0.9 (compiled Jan 19 2006)
generating p-code
0 errors, 0 warnings
3615 tokens, 28452 chars; 912 lines; 3 files
cmds removed: 9
generating PIC code pass 1
generating PIC code pass 2
writing result
Code area: 6 of 8192 used
Data area: 6 of 352 used
Software stack available: 96 bytes
Hardware stack depth 0

c:\pjal\

And on successful result, two new files will be created:

c:\pjal\test.asm

c:\pjal\test.hex

2.2 Command line compiler options

The compiler has a wealth of options to enable various debugging output6.

Format: pjal options

-hex arg overrides the default name of the ".hex" file.

-asm arg overrides the default name of the ".asm" file.

-rickpic using with RICK FARMER’s PIC loader. The preamble is:
org 3
goto xxx

-debug show debug information.

-quiet no status updates.

6See Revision history section for latest JAL 2.0 version related with this document.

44

2.3 Behaviour

-s arg set the include path, elements separated with ";"

-task arg turn on basic tasking, where arg is the maximum number of tasks that can run at a
time. Arg must be >= 2 (since the main program is a task).

-pcode show pcode in the asm file.

-clear clears all user data areas on program entry (note: volatile, user-placed variables, and
unused data areas are not cleared).

-no-expr-reduction do not perform expression reduction.

-no-cexpr-reduction do not perform constant expression reduction.

-nofuse do not put FUSES into the assembly or hex file.

-long-start force the first instruction to be a long jump. It is apparently the common boot-
loader requirement. The preamble is:
bcf _pclath, 4
bcf _pclath, 3
goto xxx
goto nop

-Wno-conversion turn off signed/unsigned conversion warning.

-Wno-truncate turn off possible truncation in assignment warning.

-Wno-warn turn off all warnings.

-nocodegen do not generate any assembly code.

-Wdirectives issue a warning when a compiler directive is found.

-warn-stack-overflow changes hardware stack overflow errors to warnings.

2.3 Behaviour

2.3.1 End of program.

In JAL 2.0, if the execution runs out of statements, the following lines are automatically in-
cluded:

ASSEMBLER
LOCAL label
label:

sleep

45

2 Compiler

goto label
END ASSEMBLER

... so one is guaranteed to never fall of the end off a program.

2.3.2 FOR without USING

If the token USING variable does not exist:

FOR expr LOOP
block

END LOOP

... becomes:

_temp = 0
WHILE (_temp < expr) LOOP

block
_temp = _temp + 1

END LOOP

If the USING variable clause does exist, the variable is used instead of _temp. If _temp is
needed, its type will be the same type as expr.

2.3.3 Optimization

In JAL 2.0, two internal counters are kept for each variable:

• assign_ct: the number of times a variable has been assigned a value

• use_ct: the number of times a variable’s value appears in an expression

so, given the assignment: x = y

x’s assign_ct is incremented, and y’s use_ct is incremented.

During the optimizer phase, if a variable’s use_ct is zero (the variable never occurs on the
right-hand side of an assignment, and is never passed to a procedure), any assignment to that
variable is removed.

Also, if a variable’s assign_ct is zero (the variable never occurs on the left-hand side of
an assignment, and is not an IN parameter to a procedure), that variable is changed to type
CONST and is assigned a value of 0.

If a variable is marked VOLATILE, this optimization doesn’t occur because by definition a
VOLATILE variable is both assigned and used (for example, a PIC register).

46

2.3 Behaviour

2.3.4 Debug output

cmd=0x004C79D8 op=18
...4c7988[B---1]:{4c78d8:_btemp0[B---:1]}
cmds removed: 11

These are debugging messages only. If you don’t compile with "-pcode" and "-debug"
you won’t see them7.

cmd=xxxx is the pcode cmd identifier

op=xx means this is an operator pcode (as opposed to a branching one)

nnnnn:’B—x’ translates to:

nnnnn : value identifier

B boolean

C constant

V volatile

S signed

x width (a number)

The variable is also dumped. This information is useless unless you’ve the source code and a
debugger available.

7See section 2.2 on page 44.

47

2 Compiler

48

3 Libraries

3.1 PIC definition library structure

These libraries describes the core of some PIC chips in order to use inside a JAL 2.0 program.

3.1.1 Chip definition file

The file "chipdef.jal" contains constants needed by JAL 2.0.

The constant values that are assigned by JAL 2.0 to target_chip are:

const pic_16f877 = 1
const pic_16f628 = 2
const pic_16c84 = 3
const pic_16f84 = 4
const pic_12c509a = 5
const pic_12f675 = 6
const pic_18f242 = 7
const pic_18f252 = 8
const pic_18f452 = 9
const pic_SX18 = 10
const pic_SX28 = 11
const pic_SX = 12

Other constants defining different PICs may be added by the user, as long a core definition
file1 and a PIC chip definition file2 are also generated.

The constant values that are assigned by JAL 2.0 to target_cpu are:

const pic_12 = 1
const pic_14 = 2
const pic_16 = 3
const sx_12 = 4

1See section 3.1.2 on the following page
2See section 3.1.3 on page 53

49

3 Libraries

Other constants used widely:

const bit on = 1
const bit off = 0
const byte w = 0
const byte f = 1
const bit true = 1
const bit false = 0
const bit high = 1
const bit low = 0

JAL 2.0 control bit, only useful if you are sharing libraries with JAL 2.0 and JAL:

const bit PJAL = 1

3.1.2 Core definition file

Describes internal hardware structure of a subset of Microchip TM PICs. As reference, here is
the "c16f87x.jal" file structure that covers all PIC16F87x subset.

In the first line must be an include to Core definition file3:

include chipdef

Following the type of CPU :

const target_cpu = pic_14

Number of Stack levels :

pragma stack 8

Configuration word address and default value :

const word _fuses = 0x3fff ; default value
const word _fuse_base = 0x2007 ; address

For PICs with several configuration words (ie: PIC16F88):

3See section 3.1.1 on the preceding page

50

3.1 PIC definition library structure

const word _fuses_ct = 2
const word _fuses[_fuses_ct] = {0x3fff, 0x3fff} ; default value
const word _fuse_base[_fuses_ct] = {0x2007, 0x2008} ; where to put it

Minimal set of SFRs needed by JAL 2.0. You are warned not to change names, these must
begin with underscore:

var volatile byte _pic_isr_w
at {0x007f, 0x00ff, 0x017f, 0x01ff }

var volatile byte _ind
at {0x0000, 0x0080, 0x0100, 0x0180}

var volatile byte _pcl
at {0x0002, 0x0082, 0x0102, 0x0182}

var volatile byte _status
at {0x0003, 0x0083, 0x0103, 0x0183}

var volatile byte _fsr
at {0x0004, 0x0084, 0x0104, 0x0184}

var volatile byte _pclath
at {0x000a, 0x008a, 0x010a, 0x018a}

Bit position of STATUS flags :

const byte _irp = 7
const byte _rp1 = 6
const byte _rp0 = 5
const byte _not_to = 4
const byte _not_pd = 3
const byte _z = 2
const byte _dc = 1
const byte _c = 0

Details of configuration word fuses :

pragma fuse_def protection 0b11000000110000 {
on = 0b00000000000000
off = 0b11000000110000
}

pragma fuse_def debug 0b00100000000000 {
on = 0b00000000000000
off = 0b00100000000000
}

51

3 Libraries

pragma fuse_def cdp 0b00000100000000 {
on = 0b00000000000000
off = 0b00000100000000
}

pragma fuse_def lvp 0b00000010000000 {
on = 0b00000010000000
off = 0b00000000000000
}

pragma fuse_def bor 0b00000001000000 {
on = 0b00000001000000
off = 0b00000000000000
}

pragma fuse_def powerup 0b00000000001000 {
off = 0b00000000001000
on = 0b00000000000000
}

pragma fuse_def watchdog 0b00000000000100 {
off = 0b00000000000000
on = 0b00000000000100
}

pragma fuse_def osc 0b00000000000011 {
lp = 0b00000000000000
xt = 0b00000000000001
hs = 0b00000000000010
rc = 0x00000000000011
}

For PICs with several configuration words (ie: PIC16F88):

pragma fuse_def IESO:1 0b0_0000_0000_0010 {
ENABLED = 0b0_0000_0000_0010
DISABLED = 0b0_0000_0000_0000

}

pragma fuse_def FCMEN:1 0b0_0000_0000_0001 {
ENABLED = 0b0_0000_0000_0001

52

3.1 PIC definition library structure

DISABLED = 0b0_0000_0000_0000
}

3.1.3 PIC chip definition file

This file describes an specific PIC chip, distinguishing it from the rest of PICs of the subset.
As reference, here is the "c16f877.jal" file structure for PIC16F877 PIC chip.

In the first line must be an include to the Core definition file4:

include c16f87x

Following chip, RAM, ROM and EEPROM memory ranges :

pragma target chip 16f877
pragma data 0x0020-0x007f, 0x00a0-0x00ff,

0x120-0x16f, 0x1a0-0x1ef
pragma code 8192
pragma eeprom 0x2100, 256

3.1.4 Example of usage

-- main program
-- This must be in first line
include c16f877

-- Clock frequency
const target_clock = 10_000_000

-- main program
var volatile byte a

a = a + 1

Note: This small program compiles without errors.

4See section 3.1.2 on page 50

53

3 Libraries

3.2 Other libraries

At the time of writing the new JAL 2.0 compiler there are few tested libraries available for use
in your projects5.

To solve this problem, you can:

• Write your own set of libraries and share those with pjal community – highly recom-
mended –.

• Wait for someone to write a set of libraries – not recommended –.

• Modify earlier JAL[4, 6] libraries to use with JAL 2.0 compiler and share those with pjal
community – highly recommended –.

• Use STEF MIENTKI’s libraries[7].

It’s not the purpose of this manual to describe what should be a full set of useful libraries.
Instead we offer some guidelines on how to code basic operations in a PIC and start to create
libraries of your own.

3.2.1 Operating with digital I/O ports

PIC chips – like PIC16F877 – have several I/O ports you can handle in your code. In order to
use them in JAL 2.0 you will need to declare them:

-- remember to declare SRFs "volatile"
var volatile byte PORTB at {0x06,0x106}

Also you will need the TRIS registers:

-- remember to declare SRFs "volatile"
var volatile byte _TRISB at {0x86,0x186}

Now you have a basic management of PIC ports.

PORTB = 0 -- Reset PORTB
_TRISB = 0b_0000_0000 -- All PORTB output
PORTB = 0b_0001_0001 -- Set b4 and b0
PORTB = 0b_0000_1001 -- Clear b4, Set b3 and b0

5See Revision history section on page 7.

54

3.2 Other libraries

In order to manage the pins (the bits) individually, firstly you must declare them:

var volatile byte PORTB at {0x06,0x106}
var volatile bit pin_b0 at PORTB : 0
var volatile bit pin_b1 at PORTB : 1
var volatile bit pin_b2 at PORTB : 2
var volatile bit pin_b3 at PORTB : 3
var volatile bit pin_b4 at PORTB : 4
var volatile bit pin_b5 at PORTB : 5
var volatile bit pin_b6 at PORTB : 6
var volatile bit pin_b7 at PORTB : 7

const bit input = on
const bit output = off

var volatile byte _TRISB at {0x86,0x186}
var volatile bit pin_b0_direction at _TRISB : 0
var volatile bit pin_b1_direction at _TRISB : 1
var volatile bit pin_b2_direction at _TRISB : 2
var volatile bit pin_b3_direction at _TRISB : 3
var volatile bit pin_b4_direction at _TRISB : 4
var volatile bit pin_b5_direction at _TRISB : 5
var volatile bit pin_b6_direction at _TRISB : 6
var volatile bit pin_b7_direction at _TRISB : 7

Now you can manage pins in this way:

var bit mybit -- declare a variable

PORTB = 0 -- Reset PORTB
_TRISB = 0b_0000_0000 -- All PORTB output
pin_b0 = high -- Set b0
pin_b4_direction = input -- b4 I/O input
mybit = pin_b4 -- Read b4 and store in mybit

If this was a step you would frequently repeat, you would put it in a procedure:

function port_do_stuff return bit is
PORTB = 0 -- Reset PORTB
_TRISB = 0b_0000_0000 -- All PORTB output
pin_b0 = high -- Set b0
pin_b4_direction = input -- b4 I/O input
return pin_b4 -- Read b4 exit with value

end function

55

3 Libraries

Whenever your program needs to execute the above steps just add:

var bit mybit -- declare a variable

mybit = port_do_stuff -- call the function and
-- store b4 in mybit.

at the appropriate places in your code.

3.2.2 Shadowing digital I/O ports

When you perform any operation with PIC registers, first the register is read, then it’s modified
and finally it is written back to the register. This is fine when dealing with normal registers
and most SFRs. However, you can have problems with I/O ports. Why? Because when the
PIC reads a port register, it reads the actual state of the pins, rather than the output latch. This
can cause two problems:

1. If the pin is an input, then the input pin state will be read, the operation performed on it,
and the result sent to the output latch. This may not immediately cause problems, but if
that pin is made into an output later on, the state of the output latch may have changed
from the time it was deliberately set by the code.

2. If the pin is defined as an output, the output latch and the actual pin should be in the
same state. In practice sometimes they aren’t. If you are driving a capacitive load, the
pin will take time to respond as it charges and discharges the capacitor. A common
problem occurs when using the pin is set or clear directly on a port.

In order to avoid this issue, it’s common to use a shadow register. The shadow register is
simply a ram location you reserve. All operations are performed on this register, and when
you are finished, you copy it to the port register. It’s a bit more trouble, and it can slow things
down a tiny bit, but the effort is worth it for reliable operation6.

In order to implement this shadow registers using JAL 2.0, first you must declare these
shadow registers:

-- shadow registers
-- may not be declared as volatile
var byte _port_b_buffer

Now, write the necessary code to write into these shadow registers:

6This is an extract of MICHAEL RIGBY-JONES explanation stored in PICList[8].

56

3.2 Other libraries

procedure portb’put(byte in x) is
_port_b_buffer = x -- make changes into "shadows"
portb = _port_b_buffer -- send them to real I/O port

end procedure

Now you have a basic management of digital I/O ports using shadow registers:

_TRISB = 0b_0000_0000 -- All PORTB output
portb = 0b_1111_0000 -- Set a value in Port B

In order to manage the pins individually using these shadow registers:

-- To read pins, take them from real I/O ports
-- not from shadow registers
var volatile bit pin_b0 at portb : 0

-- Once pin_b0 is declared, override "write assignment"
procedure pin_b0’put(bit in x at _port_b_buffer : 0) is

portb = _port_b_buffer
end procedure

Now you can manage pins in this way:

var bit mybit -- declare a variable

portb = 0 -- Reset PORTB
_TRISB = 0b_0000_0000 -- All PORTB output
pin_b0 = high -- Set b0
pin_b4_direction = input -- b4 I/O input
mybit = pin_b4 -- Read b4 and store in mybit

3.2.3 Disabling analog functions

All PIC chips that have an analog module have the corresponding pins associated with this
module ready to work in analog mode on reseting the device. The reason is that if an analog
voltage is applied at pin (configured in digital mode) may cause the input buffer to consume
current that is out of device specifications.

If your application needs to work with these pins in digital mode, you must deactivate
analog mode first.

To do this, you must locate the desired SFR location (see your PIC chip datasheets) and
declare it:

57

3 Libraries

var volatile byte ADCON0 at 0x1F

Next, configure this SFR with the desired value:

ADCON0 = 0x07

In order to make a library to be useful with different PIC chips, you can extend this for
different chips:

procedure disable_a_d_functions is
if TARGET_CHIP == 16f877 then

var volatile byte _adcon0 at 0x1F
_adcon0 = 0x07

elsif TARGET_CHIP == 16f28 then
var volatile byte _vrcon0 at 0x9F
_vrcon0 = 0x07

end if
end procedure

-- call the procedure to disable AD functions
disable_a_d_functions

In this case the expression "IF ... ELSIF ... END IF" is a conditional compila-
tion, that is evaluated at compile time. For this reason, SFR is declared inside the "IF ...".

3.2.4 Configuring the Oscillator

All PIC chips works thanks to an oscillator. In nearly all PICs you must configure this element
in the configuration word. The basic type oscillator is built around an inverter amplifier that
drives an external component (a crystal or resonator on the amplifier positive feedback loop
and two capacitors connected between amplifier in/out to ground). Designing the elements of
this oscillator must be done with care, as an analog device needs (the combination of the quartz
quality factor, capacitor values and PCB route lenghts affects the amplitude oscillation, start
up oscillator delay and oscillator supply current). For PIC16F877, configuring the oscillator
it’s easy:

-- config oscillator
pragma target osc xt

-- Fosc value
pragma target clock 4_000_000

58

3.2 Other libraries

Other PICs gives you several oscillator configurations, like PIC16F628:

Mode Description
LP Low-Power Crystal
XT Crystal/Resonator
HS High-Speed Crystal/Resonator
EC IO on RA6 and External Clock on RA7
ER1 CLKOUT on RA6 and External Resistor on RA7
ER2 IO on RA6 and External Resistor on RA7

INTRC1 Internal oscillator with CLKOUT on RA6 and IO on RA7
INTRC2 Internal oscillator with IO on RA6 and RA7

Also, newer PICs have some specific SFRs to change the behaviour of the oscillator. When
using these PICs, like PIC16F88 (PIC16F819, PIC16F688, etc), you must take care of the
default reset state values of these SFRs and initialize them in accordance with your hardware.

Example:

The OSCON register of PIC16F88.

R/W R/W R/W R/W R R/W R/W
— IRCF2 IRCF1 IRCF0 OSTS IOFS SCS1 SCS0

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Note: — = not used, R/W = read/write, R= read only

IRCF2 : IRCF1 : IRCF0 internal RC osc frequency select bits.

000 = 31.25KHz
001 = 125KHz
010 = 250KHz
011 = 500KHz
100 = 1MHz
101 = 2MHz
110 = 4MHz
111 = 8MHz

OSTS Oscillator start-up time-out bit.

1 = running from primary clock (OSC1-OSC2 device)
0 = running from secondary clock (T1OSO-T1OSI device)

or internal RC oscillator

59

3 Libraries

IOFS INTOSC frequency stable bit (read only).

1 = frequency is stable
0 = frequency is not stable

SCS1 : SCS0 Oscillator mode select bits.

00 = osc mode defined by FOSC<2:0> (configuration word 1)
01 = T1OSC used as system clock
10 = INTRC used as system clock

Example:

Configuration of the oscillator for PIC16F88 as 4MHz internal RC oscillator and output
frequency INTOSC/4 at pin RA6.

pragma target osc int_clko

-- OSCCON
var volatile byte OSCCON at 0x8F

-- INTRC=4MHz, Running from INTRC as secondary clock,
-- Stable frequency, Osc. defined by FOSC bits from
-- the configuration word
OSCCON = 0b_0110_0100

-- OSCTUNE
var volatile byte OSCTUNE at 0x90

-- Set default factory calibration
OSCTUNE = 0

-- Declare the frequency of the configured oscillator
pragma target clock 4_000_000

3.2.5 Making JAL 2.0 to recognize your own PIC device

It is possible to add newer PIC devices to JAL 2.0, a brief description of related libraries is in
previous chapter7. In order to do this job, you must take into account following notes:

7See section 3.1 on page 49.

60

3.2 Other libraries

• Current JAL 2.0 version8 only supports PIC14 architecture.

• The modified libraries will be overwriten by future JAL 2.0 libraries.

• Future JAL 2.0 versions can make your projects useless, since past changes no longer
exist.

• There is no guarantee that your changes will work with your JAL 2.0 version.

• Make a backup of whole HOME_PJAL directory prior to do anything.

In order to add your own favourite PIC device, you must edit chipdef.jal9 and write the
necessary lines for your desired new PICs10:

const pic_16f676 = 100
const pic_16f88 = 101

Allocated numbers should not overrides the old target_chip constant definitions. Save the
chipdef.jal overwritting the old file.

Create a core definition file for your favourite PIC microcontroller inspiring yourself from
the PIC datasheet and the already existing core definition files11.

Example:

For the PIC16F88 will look like this one:

; <c16f8x.jal> this is the name of the following file
include chipdef
;
; chip definition for the 16f87_16F88 series
const target_cpu = pic_14

var volatile byte _ind AT {0x0000, 0x0080, 0x0100, 0x0180}
var volatile byte _pcl AT {0x0002, 0x0082, 0x0102, 0x0182}
var volatile byte _status AT {0x0003, 0x0083, 0x0103, 0x0183}
var volatile byte _fsr AT {0x0004, 0x0084, 0x0104, 0x0184}

const byte _irp = 7
const byte _rp1 = 6
const byte _rp0 = 5
const byte _not_to = 4

8See Revision History on page 7
9File located in HOME_PJAL\chipdef\chipdef.jal.

10See section 3.1.1 on page 49.
11See section 3.1.2 on page 50.

61

3 Libraries

const byte _not_pd = 3
const byte _z = 2
const byte _dc = 1
const byte _c = 0

var volatile byte _pclath AT {0x000a, 0x008a, 0x010a, 0x018a}

pragma stack 8

-- where to put config_words
const word _fuses[2] = {0x3fff,0x3fff} ; default value
const word _fuses_base[2] = {0x2007,0x2008}

pragma fuse_def protection 0b10_0000_0000_0000 {
on = 0b00_0000_0000_0000
off = 0b01_0000_0000_0000

}

pragma fuse_def ccp1 0b01_0000_0000_0000 {
rb3 = 0b00_0000_0000_0000
rb0 = 0b01_0000_0000_0000

}

pragma fuse_def debug 0b00_1000_0000_0000 {
on = 0b00_0000_0000_0000
off = 0b00_1000_0000_0000

}

pragma fuse_def wrt 0b00_0110_0000_0000 {
off = 0b00_0110_0000_0000 ; write protection off
on_00ff = 0b00_0100_0000_0000 ; 0000-00ff write protected
on_07ff = 0b00_0010_0000_0000 ; 0000-07ff write protected
on_0fff = 0b00_0000_0000_0000 ; 0000-0fff write protected

}

pragma fuse_def cdp 0b00_0001_0000_0000 {
on = 0b00_0000_0000_0000
off = 0b00_0001_0000_0000

}

pragma fuse_def lvp 0b00_0000_1000_0000 {
on = 0b00_0000_1000_0000
off = 0b00_0000_0000_0000

}

62

3.2 Other libraries

pragma fuse_def bor 0b00_0000_0100_0000 {
on = 0b00_0000_0100_0000
off = 0b00_0000_0000_0000

}

pragma fuse_def mclr 0b00_0000_0010_0000 {
on = 0b00_0000_0010_0000
off = 0b00_0000_0000_0000

}

pragma fuse_def powerup 0b00_0000_0000_1000 {
off = 0b00_0000_0000_1000
on = 0b00_0000_0000_0000

}

pragma fuse_def watchdog 0b00_0000_0000_0100 {
off = 0b00_0000_0000_0000
on = 0b00_0000_0000_0100

}

pragma fuse_def osc 0b00_0000_0001_0011 {
lp = 0b0000000000_0000
xt = 0b0000000000_0001
hs = 0b0000000000_0010
ecio = 0b0000000000_0011
int_io = 0b0000000001_0000
int_clko = 0b0000000001_0001
ext_io = 0b0000000001_0010
ext_clko = 0b0000000001_0011

}

; configuration word2 register, adr0x2008
pragma fuse_def switch 0b00_0000_0000_0010 {

on = 0b00_0000_0000_0010
off = 0b00_0000_0000_0000

}

pragma fuse_def safe_clk 0b00_0000_0000_0001 {
on = 0b00_0000_0000_0001
off = 0b00_0000_0000_0000

}

Save the file in HOME_PJAL\chipdef folder with the name c16F8x.jal.

63

3 Libraries

You must also write the PIC chip definition file12 for the PIC16F88:

; <c16f88.jal> this is the name of the following file
include c16f8x

pragma data 0x0020-0x007f, 0x00a0-0x00ef,
0x120-0x16f, 0x1a0-0x1ef

pragma code 4096
pragma eeprom 0x2100, 256

Save the file in HOME_PJAL\chipdef folder with the name c16f88.jal.

At this moment you are ready to play with your PIC16F88. Remember that all SFR’s of the
PIC16F88 (or any used bit from any SFR) must be defined before using them!13

This could be done directly in your project files like in the Examples section14, or by writing
a SFR definition file. Keep the register name or bit name identical with those from the PIC
datasheet, in this way your library could be used easily by other people. Due to the very large
size of SFR definition file, will be presented only a small part of it:

; <pjal_16F88._inc.jal> this is the name of the file

-- ---
-- Special Function Registers in BANK0 of P16F87/88
-- ---
var volatile byte INDF at {0x00,0x80,0x100,0x180}
var volatile byte TMR0 at {0x01,0x101}

; (all bank0 register definitions must be here)

-- ---
-- Special Function Registers in BANK1 of P16F87/88
-- ---
var volatile byte OPTION_REG at 0x81
var volatile byte TRISA at 0x85

; (all bank1 register definitions must be here)

-- ---
-- Special Function Registers in BANK2 of P16F87/88
-- ---

12See section 3.1.3 on page 53.
13You can test a tool called inc2jal.exe developed by STEF MIENTKI[7].
14See section 4 on page 69.

64

3.2 Other libraries

var volatile byte WDTCON at 0x105
var volatile byte EEDATA at 0x10C

; (all bank2 register definitions must be here)

-- ---
-- Special Function Registers in BANK3 of P16F87/88
-- ---
var volatile byte EECON1 at 0x18C
var volatile byte EECON2 at 0x18D

; (all bank3 register definitions must be here)

-- ---
-- OPTION_REG associated bits
-- ---
; this is an example of a complete SFR bit definition
var volatile bit NOT_RBPU at OPTION_REG : 7
var volatile bit INTEDG at OPTION_REG : 6
var volatile bit T0CS at OPTION_REG : 5
var volatile bit T0SE at OPTION_REG : 4
var volatile bit PSA at OPTION_REG : 3
var volatile bit PS2 at OPTION_REG : 2
var volatile bit PS1 at OPTION_REG : 1
var volatile bit PS0 at OPTION_REG : 0

; (all other SFR bits definitions must be here)

-- --
-- PORTA pins
-- --
var volatile bit pin_a0 at PORTA : 0

; (all port_a bit definitions must be here)

-- --
-- PORTB pins
-- --
var volatile bit pin_b0 at PORTB : 0

; (all port_b bit definitions must be here)

-- --
-- Port and pin directions

65

3 Libraries

-- --
; only port_a is exemplified but port_b should be also defined
const bit input = on
const bit output = off
const byte all_input = 0b_1111_1111
const byte all_output = 0b_0000_0000

var volatile byte port_a_direction at _TRISA
var volatile bit pin_a0_direction at _TRISA : 0

; (volatile bit directions for all pins of port_a should be here)

; IO port shadow registers may not be declared as volatile
var byte _port_a_buffer

procedure pin_a0’put(bit in x at _port_a_buffer : 0) is
porta = _port_a_buffer

end procedure

procedure port_a’put(byte in x) is
_port_a_buffer = x
porta = _port_a_buffer

end procedure

procedure port_a_low’put(byte in x) is
_port_a_buffer = (_port_a_buffer & 0xF0) | (x & 0x0F)
porta = _port_a_buffer

end procedure

procedure port_a_high’put(byte in x) is
_port_a_buffer = (_port_a_buffer & 0x0F) | (x << 4)
porta = _port_a_buffer

end procedure

function port_a_low’get return byte is
return porta & 0x0F

end function

function port_a_high’get return byte is
return (porta >> 4)

end function

Save the file in HOME_PJAL\chipdef folder with the name pjal_16F88_inc.jal
in your own library folder or better in your project folder. For a future succesfull compilation,

66

3.2 Other libraries

save all your work (including project file, libraries, all PIC definition files, and the compiler
executable file) every time you’re finished a project and it works in the real world.

67

3 Libraries

68

4 Examples

The examples of this section have been tested in a real PIC. The circuit for all examples is:

A 47nF to 100nF capacitor is recommended between MCLR and ground. this will avoid
unvanted resets when noisy loads or power supplies are used.

No PCB layout is given, you are free to build your PCB design.

All example in this section have a number starting each line. These numbers are only here
for teaching purposes and should not be in your project files.

4.1 Example 0: Blink a led.

Note: Line numbers are not included in program but used just for explanations
!

69

4 Examples

1 -- This must be in the first line
2 include c16f877
3
4
5
6
7 -- config fuses
8 pragma target protection off
9 pragma target debug off
10 pragma target cdp off
11 pragma target lvp off
12 pragma target bor off
13 pragma target powerup on
14 pragma target watchdog off
15 pragma target osc xt
16
17 -- Fosc definition
18 pragma target clock 4_000_000
19
20 -- PORTB and TRISB definitions
21 var volatile byte PORTB at {0x06,0x106}
22 var volatile byte TRISB at {0x86,0x186}
23
24 -- B4 pin definition
25 var volatile bit pin_b4 at PORTB : 4
26
27 -- Led at pin_b4
28 var volatile bit LED is pin_b4
29
30 -- 1 second wait procedure
31 procedure wait_1sec is
32 for 5 loop
33 for 6_500 loop
34 asm nop
35 end loop
36 end loop
37 end procedure
38
39
40 -- Reset PORTB
41 PORTB = 0
42
43 -- PORTB => all bits output
44 TRISB = 0b_0000_0000

70

4.2 Example 1: Scan a button.

45
46 -- main loop
47 forever loop
48 LED = high -- LED on
49 wait_1sec
50 LED = low -- LED off
51 wait_1sec
52 end loop

Description

1–2 The first line must be an include to a PIC chip definition file1.

7–15 These configuration fuses must match your specific programmer, etc. Handle with care,
a bad configuration will give you a non working PIC.

17–18 Declare the crystal value being used.

20–25 Declare the PIC port to be used. Both PORTx and TRISx are needed. Those lines
may be omited if a register definition file is included.

27–28 Declare an alias, it’s easier to remember.

30–37 A procedure to waste some time. These values will give you a crude approach to one
second delay; modify them and see the effect of the LED flashing rate. Use just one
instruction FOR 64_910 LOOP and see the effect.

40–44 Initialize and configure the port. This initialization part is usually the first lines of the
main code.

46–52 Real main code. Here, an endless loop with our magic LED blinking sequence: LED
on, wait, LED off, wait. The wait sequence is necessary to see the LED blinking.

4.2 Example 1: Scan a button.

Note: Line numbers are not included in program but used just for explanations
!

1 -- This must be in the first line
2 include c16f877
3
4

1See section 3.1.3 on page 53

71

4 Examples

5
6
7 -- config fuses
8 pragma target protection off
9 pragma target debug off
10 pragma target cdp off
11 pragma target lvp off
12 pragma target bor off
13 pragma target powerup on
14 pragma target watchdog off
15 pragma target osc xt
16
17 -- Fosc definition
18 pragma target clock 4_000_000
19
20 -- PORTB and TRISB definitions
21 var volatile byte PORTB at {0x06,0x106}
22 var volatile byte TRISB at {0x86,0x186}
23
24 -- B0 pin definition
25 var volatile bit pin_b0 at PORTB : 0
26
27 -- B4 pin definition
28 var volatile bit pin_b4 at PORTB : 4
29
30
31 -- Button at pin_b0
32 var volatile bit Button is pin_b0
33
34 -- Led at pin_b4
35 var volatile bit LED is pin_b4
36
37
38 -- Reset PORTB
39 PORTB = 0b_0000_0000
40
41 -- PORTB => b7 ..b1 = output, b0 = input
42 TRISB = 0b_0000_0001
43 PORTB = 0b_0000_0001
44
45 -- main loop
46 forever loop

-- pressed button pulls pin low, see schematic
47 if ! Button then ; Check if Button pressed

72

4.3 Example 2: Control the blink of a led.

48 LED = on
49 else ; ... if not pressed
50 LED = off
51 end if
52 end loop

Description

1–22 See Example 0 in section 4.1 1 on page 70.

24–35 Add declarations of both elements being used: the LED and the Button.

38–43 While initializing the port, take care to declare LED pin as output and Button pin as
input.

47 By pressing the Button, the pin will be tied to Ground2. In order to detect it with the IF
statement we must apply a logical invert to the bit variable. In this way – on pressing
button – the logical expression IF ! Button THEN ... of the IF statement will
be true. Button contact bouncing is not prevented in this program.

47–51 LED will be ON when Button is pressed, and will be OFF when Button is not pressed.

4.3 Example 2: Control the blink of a led.

Note: Line numbers are not included in program but used just for explanations
!

1 -- This must be in the first line
2 include c16f877
3
4
5
6
7 -- config fuses
8 pragma target protection off
9 pragma target debug off
10 pragma target cdp off
11 pragma target lvp off
12 pragma target bor off
13 pragma target powerup on
14 pragma target watchdog off

2See the circuit in section 4 on page 69.

73

4 Examples

15 pragma target osc xt
16
17 -- Fosc definition
18 pragma target clock 4_000_000
19
20
21 -- PORTB and TRISB definitions
22 var volatile byte PORTB at {0x06,0x106}
23 var volatile byte TRISB at {0x86,0x186}
24
25 -- B0 pin definition
26 var volatile bit pin_b0 at PORTB : 0
27
28 -- B4 pin definition
29 var volatile bit pin_b4 at PORTB : 4
30
31
32 -- Button at pin_b0
33 var volatile bit Button is pin_b0
34
35 -- Led at pin_b4
36 var volatile bit LED is pin_b4
37
38 -- 1 second wait procedure
39 procedure wait_1sec is
40 for 5 loop
41 for 6_500 loop
42 asm nop
43 end loop
44 end loop
45 end procedure
46
47 procedure delay_miliseconds is
48 for 1000 loop
49 asm nop
50 end loop
51 end procedure
52
53 -- Reset PORTB
54 PORTB = 0b_0000_0000
55
56 -- PORTB => output
57 TRISB = 0b_0000_0001
58 PORTB = 0b_0000_0001

74

4.4 Example 3: Adding a hardware timer.

59
60 -- main loop
61 forever loop
62 if ! Button then ; Check if Button pressed
63 delay_milisecons
64 if ! Button then
65 ; Check again if Button pressed
66 LED = on
67 wait_1sec
68 LED = off
69 wait_1sec
70 end if
71 end if
72 end loop

Description

1–36 See Example 1 in section 4.2 1 on page 72.

38–45 See Example 0 in section 4.1 on page 70.

53–58 See Example 1 in section 4.2 1 on page 72.

62 See Example 1 in section 4.2 1 on page 72.

62–71 In this example the LED will blink only when Button is pressed longer than a few
miliseconds.

4.4 Example 3: Adding a hardware timer.

Note: Line numbers are not included in program but used just for explanations
!

1 -- This must be in first line
2 include c16f877
3
4
5
6
7 -- config fuses
8 pragma target protection off
9 pragma target debug off
10 pragma target cdp off

75

4 Examples

11 pragma target lvp off
12 pragma target bor off
13 pragma target powerup on
14 pragma target watchdog off
15 pragma target osc xt
16
17 -- Fosc definition
18 pragma target clock 4_000_000
19
20
21 -- PORTB and TRISB definitions
22 var volatile byte PORTB at {0x06,0x106}
23 var volatile byte TRISB at {0x86,0x186}
24
25 -- B0 pin definition
26 var volatile bit pin_b0 at PORTB : 0
27
28 -- B4 pin definition
29 var volatile bit pin_b4 at PORTB : 4
30
31
32 -- Button at pin_b0
33 var volatile bit Button is pin_b0
34
35 -- Led at pin_b4
36 var volatile bit LED is pin_b4
37
38
39 -- 1 millisecond wait procedure
40 -- TMR0_delay=(256-InitTMR0)*4*prescaler/Fosc
41 -- TMR0_delay=(256-6)*4*4/4_000_000= 1 msec.
42 --
43 -- InitTMR0 = 6
44 -- Prescaler = 1:4
45 -- Fosc = 4_000_000
46 --
47 -- Delay = 0.001 secs
48
49
50 -- Init TMR0, free run mode, int osc, prescaler 1:4
51 var volatile byte TMR0 at {0x01,0x101}
52 var volatile byte OPTION_REG at {0x81,0x181}
53 OPTION_REG = 0b_1000_0001
54

76

4.4 Example 3: Adding a hardware timer.

55 -- Disable interrupts, reset TMR0 flag
56 var volatile byte INTCON at {0x0B,0x8B,0x10B,0x18B}
57 var volatile bit T0if at INTCON : 2
58 INTCON = 0
59
60 const byte InitTMR0 = 6
61
62 procedure wait_1sec is
63 for 1_000 loop
64 -- Wait for TMR0 1 msec.
65 while (! T0if) loop
66 end loop
67 -- Reset TMR0IF
68 T0if = low
69 -- Add InitTMR0
70 TMR0 = TMR0 + InitTMR0
71 end loop
72 end procedure
73
74
75 -- Reset PORTB
76 PORTB = 0b_0000_0000
77
78 -- PORTB => B0 input, B1..B7 output
79 TRISB = 0b_0000_0001
80 PORTB = 0b_0000_0001
81
82
83 -- main loop
84 forever loop
85 if ! Button then ; Check if Button is
86 ; permanently pressed
87 LED = on
88 wait_1sec
89 LED = off
90 wait_1sec
91 end if
92 end loop

Description

1–36 See Example 1 in section 4.2 1 on page 72.

77

4 Examples

39–47 Inline comments with a brief description how to set TMR0. Take your PIC chip
datasheets and read the section entitled TIMER 0. The goal in this example is to get a
TMR0 overflow each millisecond. Using a 4MHz crystal, it’s necessary a prescaler of
1:4 and init TMR0 with a constant value each time it overflows.

50–58 Declare and initialize the SFRs related with TMR0. See your PIC chip datasheets,
here TMR0 will work in free running mode.

62–72 At this point TMR0 overflows each millisecond and will set a bit called T0IF. The
WHILE statement will stop program until T0IF is set (TMR0 overflow), so we must
reset this bit and load TMR0 with the init constant value. Doing these steps 1000 times
will give us one second delay.

75–80 See Example 1 in section 4.2 1 on page 72.

83–92 In this example the LED will blink only when Button is kept pressed.

4.5 Example 4: Using hardware interrupts.

Note: Line numbers are not included in program but used just for explanations
!

1 -- This must be in the first line
2 include c16f877
3
4
5
6
7 -- config fuses
8 pragma target protection off
9 pragma target debug off
10 pragma target cdp off
11 pragma target lvp off
12 pragma target bor off
13 pragma target powerup on
14 pragma target watchdog off
15 pragma target osc xt
16
17 -- Fosc definition
18 pragma target clock 4_000_000
19
20 -- PORTB and TRISB definitions
21 var volatile byte PORTB at {0x06,0x106}

78

4.5 Example 4: Using hardware interrupts.

22 var volatile byte TRISB at {0x86,0x186}
23
24 -- B0 pin definition
25 var volatile bit pin_b0 at PORTB : 0
26
27 -- B4 pin definition
28 var volatile bit pin_b4 at PORTB : 4
29
30
31 -- Button at pin_b0
32 var volatile bit Button is pin_b0
33
34 -- Led at pin_b4
35 var volatile bit LED is pin_b4
36
37
38 -- 1 millisecond delay
39 -- TMR0_delay=(256-InitTMR0)*4*prescaler/Fosc
40 -- TMR0_delay=(256-6)*4*4/4_000_000= 1 msec.
41 --
42 -- InitTMR0 = 6
43 -- Prescaler = 1:4
44 -- Fosc = 4_000_000
45 --
46 -- Delay = 0.001 secs
47
48 -- RB0INT falling edge, Init TMR0, free run mode,
49 -- int osc, prescaler 1:4
50 var volatile byte TMR0 at {0x01,0x101}
51 var volatile byte OPTION_REG at {0x81,0x181}
52 OPTION_REG = 0b_1000_0001
53
54 -- Enable TMR0 interrupt, RB0INT interrupt, reset flags
55 var volatile byte INTCON at {0x0B,0x8B,0x10B,0x18B}
56 var volatile bit T0if at INTCON : 2
57 var volatile bit INTf at INTCON : 1
58 var volatile bit INTE at INTCON : 4
59 var volatile bit T0IE at INTCON : 5
60 INTCON = 0B_1011_0000
61 const byte InitTMR0 = 6
62 var volatile bit Enable_Button is INTE
63 var volatile bit Enable_Timmer is T0IE
64
65 Enable_Timmer = off

79

4 Examples

66 Enable_Button = on
67
68 -- declare vars
69 var word milisec_count
70 var bit Flag_tmr0 = false, Flag_rb0int = false
71
72 -- TMR0 interrupt
73 procedure TMR0_ISR is
74 pragma interrupt
75 if T0if then
76 -- Reset TMR0IF
77 T0if = low
78 -- Reset InitTMR0
79 TMR0 = InitTMR0
80 -- add one count
81 milisec_count = milisec_count + 1
82 -- Check count 1_000
83 if milisec_count == 1_000 then
84 -- if 1000 msecs. => Activate flag
85 Flag_tmr0 = true
86 -- reset counter
87 milisec_count = 0
88 end if
89 end if
90 end procedure
91
92 -- RB0INT interrupt
93 procedure RB0INT_ISR is
94 pragma interrupt
95 if INTf then
96 -- Reset TMR0IF
97 INTf = low
98 -- Activate flag
99 Flag_rb0int = true
100 -- reset counter
101 milisec_count = 0
102 TMR0 = 6
103 -- Enable timmer
104 Enable_Timmer = on
105 end if
106 end procedure
107
108
109 -- Reset PORTB

80

4.5 Example 4: Using hardware interrupts.

110 PORTB = 0b_0000_0000
111
112 -- PORTB => B0 input, B1..B7 output
113 TRISB = 0b_0000_0001
114 PORTB = 0b_0000_0001
115
116
117 -- main loop
118 forever loop
119 if Flag_rb0int then ; Check if Button pressed
120 -- Disable Button interrupt
121 Enable_Button = low
122 -- Turn on LED
123 LED = on
124 -- Wait for 1 sec event
125 while (! Flag_tmr0) loop
126 end loop
127 -- Clear flag
128 Flag_tmr0 = low
129 -- Turn off LED
130 LED = off
131 -- Wait for 1 sec event
132 while (! Flag_tmr0) loop
133 end loop
134 -- Clear flag
135 Flag_tmr0 = low
136 -- Enable Button interrupt
137 Enable_Button = High
138 -- Disable timmer interrupt
139 Enable_Timmer = low
140 -- Clear flags
141 Flag_rb0int = low
142 Flag_tmr0 = low
143 end if
144 end loop

Description

1–35 See Example 1 in section 4.2 1 on page 72.

38–46 See Example 3 in section 4.4 1 on page 75.

81

4 Examples

49–52 Declare and initialize the SFRs related with TMR0. See your PIC chip datasheets,
here TMR0 will work in free running mode. Set also RB0INT edge detection to falling
edge.

54–60 Declare and configure TMR0 and RB0INT interrupts

62–66 Declare some alias, it’s easier to remember.

68–70 Declare some variables to be used globally. Flag_tmr0 and Flag_rb0in will be
used by main program to know about interrupt events.

72–90 TMR0 interrupt procedure.

75 Check if is exactly TMR0 interrupt.

76–79 Reset flag and init TMR0 again.

80–81 Add one count to our 1000 milliseconds count.

82–88 On reaching the 1000 milliseconds count, set Flag_tmr0 and reset internal count.

92–106 RB0INT interrupt procedure.

95 Check if is exactly RB0INT interrupt.

96–97 Reset flag RB0INT.

98–105 Set Flag_rb0in, enable TMR0 (will be disabled anywhere) and reset TMR0
count. In this way TMR0 will start counting only when Button is pressed.

109–114 See Example 1 in section 4.2 on page 72.

117-144 Main code. In this example the LED will blink only once each time Button is
pressed.

119 Scan Button testing Flag_rb0in bit. The interrupt procedure will do all hard job.

120–123 Disable future Button interrupt events.

122–135 The magic sequence to blink a LED.

124–128 Turn on LED and wait for one second by testing Flag_tmr0. Clear flag for next
use.

129–135 Turn off LED and wait for one second by testing Flag_tmr0. Clear flag for next
use.

136–142 Enable Button interrupt events again, disable TMR0 interrupt events (work already
done in this loop) and clear both flags.

82

5 Glossary

ACCESSOR An accessor method is a method that is usually small, simple and provides
the means for the state of an object to be accessed from other parts of a program. An
accessor method that changes the state of an object is often called an update method or,
sometimes, mutator method. Objects that provide such methods are considered mutable
objects. See Wikipedia [5], keyword: Accessor.

ANALOG DEVICE An analog device is a component of a electronic circuit that change its
properties continuously in both time and amplitude. It differs from digital devices in
that small fluctuations in the signal are meaningful in that they are continuously variable
rather than digitally quantised.

ATOMIC A single operation, with single as in non interuptable. It has to finish before any-
thing else can be done. Which implies that a singe operation might take more than one
machine instruction but they all must finisch before any interupt can interfere with the
processor. On most processors atomic is equivalent to one instruction.

BANK see MEMORY BANK.

BINARY CONSTANT Begins with "0b" and continues until the first character not in the
set {"_", "0", "1"}. It’s fully evaluated at compile time.

BIT or binary digit. Is the smallest unit of data and has a boolean value.

BITMASK also MASK. Extracts the status of certain bits in a binary string or number.

BITWISE OPERATOR Operates on individual BITs of one or two operands. See Wikipedia [5],
keyword: Bitwise.

BITWISE COMPLEMENT An operator that changes all BITs of an operand from 1 to 0 or
vice versa. See Wikipedia [5], keyword: One’s_complement.

BITWISE AND An operator that takes two bit patterns of equal length, and produces another
one of the same length by matching up corresponding bits (the first of each; the second
of each; and so on) and performing the logical AND operation on each pair of corre-
sponding bits. In each pair, the result is 1 if the first bit is 1 AND the second bit is 1.
Otherwise, the result is zero. See Wikipedia [5], keyword: Bitwise.

83

5 Glossary

BITWISE OR An operator that takes two bit patterns of equal length, and produces another
one of the same length by matching up corresponding bits (the first of each; the second of
each; and so on) and performing the logical OR operation on each pair of corresponding
bits. In each pair, the result is 1 if the first bit is 1 OR the second bit is 1. Otherwise, the
result is zero. See Wikipedia [5], keyword: Bitwise.

BITWISE XOR An operator that takes two bit patterns of equal length, and produces another
one of the same length by matching up corresponding bits (the first of each; the second of
each; and so on) and performing the logical OR operation on each pair of corresponding
bits. In each pair, the result is 1 if the two bits are different, and 0 if they are the same.
See Wikipedia [5], keyword: Bitwise.

BOOLEAN Boolean logic is a form of algebra in which all values are reduced to either TRUE
or FALSE. In JAL 2.0 this means TRUE or FALSE, also ON or OFF are valid and either
1 and 0. See Wikipedia [5], keyword: Boolean.

CONTACT BOUNCE Contact bounce is a common problem with mechanical switches and
relays. When the contacts strike together, their momentum and elasticity act together
to cause bounce. The result is a rapidly pulsed electrical current instead of a clean
transition from zero to full current. If the switch voltage is fed directly to the input of
a microprocessor, then the software might become confused by the rapid sequence of
high and low logic levels when it is expecting only a single, stable transition between
"on" and "off". See Wikipedia [5], keyword: Switch.

COMPILER DIRECTIVE Data embedded in source code to tell the compiler some intention
about compilation. See Wikipedia [5], keyword: Compiler_directive.

CO-OPERATIVE MULTITASKING (or non-preemptive multitasking) is a form of multi-
tasking in which multiple tasks execute by voluntarily ceding control to other tasks
at programmer-defined points within each task. See Wikipedia [5], keyword: Co-
operative_multitasking.

DECIMAL CONSTANT Begins with a digit, and continues until the first character not in the
set {"_", digit}. It’s fully evaluated at compile time.

DECLARATION Specifies a variable’s dimensions, identifier, type, and other aspects.

DIGIT A character in the set {"0"–"9"}.

ENDIANNESS The two main types of endianness are known as big-endian and little-endian.
In big-endian, the most significant byte (MSB) is stored at the memory location with
the lowest address. In little-endian, the least significant byte (LSB) is stored at the
memory location with the lowest address. pJAL and PICs uses little-endian memory
management. See Wikipedia [5], keyword: Endianness.

84

EXPRESSION Anything that evaluates to a value, for example x + 1.

IDENTIFIER Begins with a member of the set {"_", "a"–"z", "A"–"Z"} and continues
until the first character NOT in the set {"_", "a"–"z", "A"–"Z", digit}.

INTERRUPT is an asynchronous signal from hardware (or software) indicating the need for
attention. Originated as a way to avoid wasting the processors valuable time in polling
loops, waiting for external events. Instead, an interrupt signals the processor when an
event occurs, allowing the processor to process other work while the event is pending.
See Wikipedia [5], keyword: Interrupt.

HEXADECIMAL CONSTANT Begins with "0x" and continues until the first character not
in the set {"_", "0"–"9", "a"–"f", "A"–"F"}. It’s fully evaluated at compile time.

LOGICAL EXPRESSION The result is 0 if the expression evaluation is zero, and 1 if the
expression evaluation is anything other than 0.

LOGICAL NOT An operator that changes the boolean state from TRUE to FALSE or vice
versa.

LSB It is the byte in that position of a multi-byte number which has the least potential
value. If it’s written in lowercase, means the lowest BIT. See Wikipedia [5], keyword:
Least_significant_byte.

MEMORY BANK PIC architecture typically has more memory registers than can be ad-
dressed in a single byte address. A special SFR register is utilized to switch to another
bank of memory where the base addresses repeat. Check the specific PIC datasheet to
determine the number of banks and their size.

MODULO The modulo operation finds the remainder of division.

MSB It is the byte in that position of a multi-byte number which has the greatest potential
value. If it’s written in lowercase, means the greatest BIT. See Wikipedia [5], keyword:
Most_significant_byte.

MULTITASKING is a method by which multiple tasks, also known as processes, share com-
mon processing resources such as a CPU. See Wikipedia [5], keyword: Computer_multitasking.

NIBBLE Half of a an 8 bit byte, a group of 4 bits. Corresponding JAL 2.0 type is BIT*4, eg:
you can send data to a HD44780 LCD in nibble (4 bit) mode.

85

5 Glossary

OCTAL CONSTANT Begins with "0q" and continues until the first character not in the set
{"_", "0"–"7"}. It’s fully evaluated at compile time.

OPERATOR The most basic mathematical or logical functions usually represented by a sin-
gle character eg: + - *

OPERAND One of the inputs (arguments) of an operator.

PRAGMA (short for "pragmatic information"), see COMPILER DIRECTIVE.

STRING CONSTANT Begins with ’ and continues until the next ’. Also, begins with "
and continues until the next ". It’s fully evaluated at compile time.

TOKENS JAL 2.0 syntax is based on tokens. In programming languages, a single element
of a programming language. In JAL 2.0 can be an identifier, constant, operator, or any
non-space character. See Wikipedia [5], keyword: Token.

TRINARY OPERATOR An operator which three operands are associated with the operator.
Example: in C programming language the ? operator, c?a:b.

UNARY OPERATOR Also MONADIC operator. An operator which only takes one operand
(argument), eg: -1 (a negative value).

VAR Variable.

86

6 GNU Free Documentation License

GNU Free Documentation License

Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document "free" in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals; it
can be used for any textual work, regardless of subject matter or whether it is published as a
printed book. We recommend this License principally for works whose purpose is instruction
or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work
under the conditions stated herein. The "Document", below, refers to any such manual or work.
Any member of the public is a licensee, and is addressed as "you". You accept the license if
you copy, modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another lan-
guage.

87

6 GNU Free Documentation License

A "Secondary Section" is a named appendix or a front-matter section of the Document that
deals exclusively with the relationship of the publishers or authors of the Document to the
Document’s overall subject (or to related matters) and contains nothing that could fall directly
within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a
Secondary Section may not explain any mathematics.) The relationship could be a matter
of historical connection with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released under
this License. If a section does not fit the above definition of Secondary then it is not allowed
to be designated as Invariant. The Document may contain zero Invariant Sections. If the
Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License. A
Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in
a format whose specification is available to the general public, that is suitable for revising
the document straightforwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats suit-
able for input to text formatters. A copy made in an otherwise Transparent file format whose
markup, or absence of markup, has been arranged to thwart or discourage subsequent mod-
ification by readers is not Transparent. An image format is not Transparent if used for any
substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LATEX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML, PostScript or PDF designed for human modification.
Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include
proprietary formats that can be read and edited only by proprietary word processors, SGML or
XML for which the DTD and/or processing tools are not generally available, and the machine-
generated HTML, PostScript or PDF produced by some word processors for output purposes
only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page. For
works in formats which do not have any title page as such, "Title Page" means the text near
the most prominent appearance of the work’s title, preceding the beginning of the body of the
text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is
precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another
language. (Here XYZ stands for a specific section name mentioned below, such as "Acknowl-
edgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title" of such

88

a section when you modify the Document means that it remains a section "Entitled XYZ"
according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this
License applies to the Document. These Warranty Disclaimers are considered to be included
by reference in this License, but only as regards disclaiming warranties: any other implication
that these Warranty Disclaimers may have is void and has no effect on the meaning of this
License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or non-
commercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no other
conditions whatsoever to those of this License. You may not use technical measures to ob-
struct or control the reading or further copying of the copies you make or distribute. However,
you may accept compensation in exchange for copies. If you distribute a large enough number
of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible. You
may add other material on the covers in addition. Copying with changes limited to the covers,
as long as they preserve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque copy,
or state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a com-
plete Transparent copy of the Document, free of added material. If you use the latter option,
you must take reasonably prudent steps, when you begin distribution of Opaque copies in
quantity, to ensure that this Transparent copy will remain thus accessible at the stated location
until at least one year after the last time you distribute an Opaque copy (directly or through
your agents or retailers) of that edition to the public.

89

6 GNU Free Documentation License

It is requested, but not required, that you contact the authors of the Document well be-
fore redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of
sections 2 and 3 above, provided that you release the Modified Version under precisely this
License, with the Modified Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least
five of the principal authors of the Document (all of its principal authors, if it has
fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the
form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required
Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled "History" in the Doc-
ument, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

90

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
"History" section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Ti-
tle of the section, and preserve in the section all the substance and tone of each of
the contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Sec-
ondary Sections and contain no material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this, add their titles to the list of
Invariant Sections in the Modified Version’s license notice. These titles must be distinct from
any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorse-
ments of your Modified Version by various parties–for example, statements of peer review or
that the text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25
words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the

91

6 GNU Free Documentation License

combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections
with the same name but different contents, make the title of each such section unique by adding
at the end of it, in parentheses, the name of the original author or publisher of that section if
known, or else a unique number. Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original
documents, forming one section Entitled "History"; likewise combine any sections Entitled
"Acknowledgements", and any sections Entitled "Dedications". You must delete all sections
Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with a
single copy that is included in the collection, provided that you follow the rules of this License
for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent docu-
ments or works, in or on a volume of a storage or distribution medium, is called an "aggregate"
if the copyright resulting from the compilation is not used to limit the legal rights of the com-
pilation’s users beyond what the individual works permit. When the Document is included in
an aggregate, this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover Texts
may be placed on covers that bracket the Document within the aggregate, or the electronic
equivalent of covers if the Document is in electronic form. Otherwise they must appear on
printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may include translations of some or
all Invariant Sections in addition to the original versions of these Invariant Sections. You
may include a translation of this License, and all the license notices in the Document, and

92

any Warranty Disclaimers, provided that you also include the original English version of this
License and the original versions of those notices and disclaimers. In case of a disagreement
between the translation and the original version of this License or a notice or disclaimer, the
original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History",
the requirement (section 4) to Preserve its Title (section 1) will typically require changing the
actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly pro-
vided for under this License. Any other attempt to copy, modify, sublicense or distribute the
Document is void, and will automatically terminate your rights under this License. However,
parties who have received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Docu-
mentation License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns.

See http://www.gnu.org/copyleft.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License "or any later version" applies to it,
you have the option of following the terms and conditions either of that specified version or of
any later version that has been published (not as a draft) by the Free Software Foundation. If
the Document does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents To use this License in a docu-
ment you have written, include a copy of the License in the document and put the following
copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.2 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled "GNU Free Documentation
License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with
... Texts”. line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being
LIST, and with the Back-Cover Texts being LIST.

93

6 GNU Free Documentation License

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU General
Public License, to permit their use in free software.

94

References

[1] Microchip’s homepage: http://www.microchip.com

[2] PICbsc’s homepage: http://www.casadeyork.com/robot/picbsc

[3] JAL 2.0 download homepage: http://www.casadeyork.com/pjal

[4] WOUTER VAN OOIJEN’s homesite: http://www.voti.nl/jal

[5] Wikipedia’s homepage: http://en.wikipedia.org

[6] GPL JAL homepage: http://jal.sf.net

[7] STEF MIENTKI’s JAL 2.0 homepage: http://pic.flappie.nl

[8] PICList RMW issue: http://www.piclist.com/techref/readmodwrite.htm

95

http://www.microchip.com
http://www.casadeyork.com/robot/picbsc
http://www.casadeyork.com/pjal
http://www.voti.nl/jal
http://en.wikipedia.org
http://jal.sf.net
http://pic.flappie.nl
http://www.piclist.com/techref/readmodwrite.htm

	Language definition
	basics
	Format
	Comments
	Includes
	Program
	Scope
	Block

	basic types
	Built-in types
	Extending types

	Literals
	Constants
	Variables
	Declaration
	Location
	Volatile
	Alias

	Tables
	Constant tables
	Variable tables

	Expressions
	Operators
	Priority

	Statements
	Declaration
	Assignment
	IF
	WHILE
	FOR
	FOREVER
	COUNT
	_usec_delay

	Procedures and functions
	Pseudo variables

	Tasks
	Inline assembler
	Single assembler statement
	Assembler block
	Scope

	Pragmas
	Chip Definition Pragmas

	Compiler
	Basic
	Command line compiler options
	Behaviour
	End of program.
	FOR without USING
	Optimization
	Debug output

	Libraries
	PIC definition library structure
	Chip definition file
	Core definition file
	PIC chip definition file
	Example of usage

	Other libraries
	Operating with digital I/O ports
	Shadowing digital I/O ports
	Disabling analog functions
	Configuring the Oscillator
	Making JAL 2.0 to recognize your own PIC device

	Examples
	Example 0: Blink a led.
	Example 1: Scan a button.
	Example 2: Control the blink of a led.
	Example 3: Adding a hardware timer.
	Example 4: Using hardware interrupts.

	Glossary
	GNU Free Documentation License

